

Invigilator's Signature : \qquad

CS/Int.PBR(PHY)/SEM-1 /PHY-101/2010-11
 2010-11
 CLASSICAL DYNAMICS

Time Allotted : 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any two from the rest.

1. a) Derive the expression for the general variation, δS of the action S of a system with n degrees of freedom when the Lagrangian

$$
L \int L(q, \dot{q}, t), q=q_{1}, q_{2}, \ldots \ldots q_{n}
$$

b) Obtain Noether's identity.
c) Deduce Lagrange's equation of motion from Hamilton's principle of least action.

4
d) Consider a system of N particles given by the Lagrangian :

$$
\left[L=\frac{1}{2} \sum_{\boldsymbol{a}=\mathbf{1}}^{N} m_{a} \dot{r}_{a}^{2}-\sum_{\boldsymbol{a} \neq \boldsymbol{b}} V\left(\left|r_{a}-r_{b}\right|\right) \cdot\right]
$$

Deduce the conserved quantity using the result
(b) above when the action has a symmetry under Galilean transformation.
2. a) Show that in a rigid body rotation, a particle fixed in the body with a position vector r is carried to a positions given by :
$s=\gamma r+(1-\gamma)(n \cdot r) n+o n$ A r
n being the unit vector along the axis of rotation and $\gamma^{2}+\sigma^{2}=1$.
b) Determine the form of a curve such that the frequency of oscillations of a particle on it under the force of gravity is independent of the amplitude.
3. a) Show that in the nonrelativistic Kepler problem with the Lagrangian $L=\frac{1}{2} \dot{x}_{j} \dot{x}_{j}+\frac{K}{r}$, the Lenz vector A =V $\mathbf{A} L-\frac{K}{r} r$ is a constant of motion. Describe the symmetry corresponding to this.
b) A system of two degrees of freedom is described by the Hamiltonian :
$H=q_{1} p_{1}-q_{2} p_{2}-a q_{1}{ }^{2}+b q_{2}{ }^{2}$, where a and b are constants. Show that $F_{1}=\frac{p_{1}-a q_{1}}{q_{2}}, \quad F_{2}=q_{1}$ q_{2} are constants of motion. Are there any other independent algebraic constants of motion ? Can any be constructed from the Jabcobi identity ?
4. a) Using Euler's angles construct the Lagrangian for a spinning top and write down the equations of motion. 7
b) Show that the $\operatorname{spin} \Omega$ of a spinning top in its steady motion must be a root of the quadratic equation :

$$
F(\Omega) \int \cos \alpha \Omega^{2}-2 p \Omega+q=0
$$

where α is the inclination of the axis of the top to z axis and p, q are determined by the principal moments of inertia at the peg.
5. a) Show that the infinitesimal change of any function f of q and p caused by an infinitesimal canonical transformation with generator $F(q, p)$ and parameter is given by $\delta f(q, p)=\{f(q, p), \quad F\}$. What do you infer if $F \int H$?
b) Prove that the transformation

$$
\begin{aligned}
& Q_{1}=q_{1}^{2}, Q_{2}=q_{2} \sec p_{2}, P_{1}=\frac{p_{1} \cos p_{2}-2 q_{2}}{2 q_{1} \cos p_{2}}, \\
& P_{2}=\sin p_{2}-2 q_{1} \text { is canonical. }
\end{aligned}
$$

