

CS/INTPBR/SEM-4/CH-523/2010 2010
 ADVANCED ORGANIC CHEMISTRY

Time Allotted : 3 Hours
Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.

GROUP - A

1. Answer any two questions :
a) Given that (S)-bromobutane has a specific rotation of $+23 \cdot 1^{\circ}$ and (R)-bromobutane has a specific rotation of $-23 \cdot 1^{\circ}$, what is the optical purity and $\%$ composition of a mixture whose specific rotation was found to be $+18 \cdot 4^{\circ}$?
b) What is the structure of β-lactam ring ? How does it work ?

CS /INTPBR/SEM-4/CH-523/2010
c) Suggest two methods for the synthesis of chal

compound. How it can be detected?
2. Complete the following reactions for any four of the following : $4 \times 2 \frac{1}{2}$
3. Write down the reagents for any five of the following

transformations, it may involve more than one step : 5×2
4. Complete any four of the following synthesis (it may inyolve
more than one step) :
5. Suggest a method to lable the fullerene with the following fluorophore.

6. a) Write down the synthetic method of the following amino acid :

5
b) Complete the synthesis for any one of the following : 5

GROUP - B

7. Determine the energy levels and their degeneracies when an electron contained in a cube of volume $L^{3}(L \rightarrow \infty)$ interacts with a magnetic field characterized by the vector potential

CS/INTPBR/SEM-4/CH-523/2010
$A=B_{0} x e_{y}\left(\left|e_{y}\right|=1\right)$. How are the degeneracies lanked to quantum Hall effect?
8. a) The Schroedinger equation for the wavefunction of a particle is $i \hbar \frac{\partial \psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x, t)}{\partial t^{2}}+V(x) \psi(x, t)$. Obtain the same equation in momentum representation.
b) Obtain the operator $\frac{1}{r}$ in momentum representation. 10
9. Starting with the expression of energy (E) of a free electron with rest mass m_{0}
$E=\sqrt{c^{2} p^{2}+m_{0}^{2} c^{4}}$
arrive at the Dirac's equation for the electron. How does it automatically lead to the existence of spin - angular momentum of the electron?
10. A particle with magnetic moment $\mu=\mu_{0} s$ and spin s, with magnitude $\frac{1}{2}$ is placed in a constant magnetic field (B) pointing along the x-axis. At $t=0$, the particle is forced to have $s_{z}=+\frac{1}{2}$. Find the probability of finding the particle with $s_{y}= \pm \frac{1}{2}$ at any later time (t).
11. Starting from Dirac's equation for an electron in a static electromagnetic field, proceed to obtain an enstimate of the magnetic moment of the electron, neglecting terms $O\left(v^{2} / c^{2}\right)$ and higher.
12. While solving the time - dependent Schroendinger equation for a diatomic molecule irradiated with a pulsed laser field, show the details of the following techniques :
a) Fast Fourier transformation for evaluating the kinetic energy operator;
b) Lanczos reduction based iteration to obtain time dependent wave function.
13. Explain :
a) What is Schroendinger current and how it's expression is used for calculating dissociation probability from a time-dependent wave function?
b) What is absorbing potential and how it is used while solving Time-Dependent Schroendinger equation?

$$
5+5
$$

14. Use 1d harmonic oscillator eigenfunctions as primitive basis and derive the form of kinetic energy operator exploiting

CS /INTPBR/SEM-4/CH-523/2010

