

CS/Int.PBIR(CH)/SEM-3/CH-511/2009-10 2009
 EQUILIBRIUM \& NON-EQUILIBRIUM STATISTICAL MECHANICS

Time Allotted : 3 Hours
Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Answer any five questions.
$5 \times 5=25$

1. Maxwell probability densities for momentum are given by the following formulae :
$\omega_{p_{i}} \mathrm{~d} p_{i}=\frac{1}{(2 \pi \mathrm{mkT})^{1 / 2}} e^{-p_{i}{ }^{2}} / 2 \mathrm{mkT} \mathrm{d} p_{i}$
where $i=x, y, z$.
Find the dispersion in p_{x}, p_{y}, p_{z} and p. What is the value of $\left\langle p_{x}^{2 n}\right\rangle$?

2, Find the free energy (F) of an ideal monatomic gas using classical Gibbs distribution and hence obtain (a) an expression for the work done in an isothermal expansion from volume V_{1} to V_{2}, (b) entropy of the gas.
3. Find out the average energy < > of an ideal electron gas at T $=0 \mathrm{~K}$, given $g_{\varepsilon}=A \varepsilon^{1 / 2}(A=$ constant $)$.
4. Plot and compare different features of function for a Bose gas and a Fermi gas as functions of energy. How does the occupation function for a Fermi gas behave around energy $\varepsilon=\mu, \mu$ being the chemical potential. Compare the distribution functions for the Bose gas and the Fermi gas.
5. What is Bose-Einstein condensation ? Show that the BEC temperature $T_{c} \propto n^{2 / 3}$ where n is the particle density.
6. Obtain an expression for the cut-off frequency $\omega_{\max }$ of a crystal of N atoms and calculate the Omega potential (Ω^{*}) for the longitudinal mode in the limit $\omega_{\max } \gg \mathrm{KT} / \hbar$. How does C_{v} vary with T in this limit ?
7. Use the grand canonical formulation to obtain an expression for the Omega potential (Ω^{*}) of an ideal photon gas and hence obtain the pressure (P) exerted by it. What is the special feature, if any, that you note in the expression for pressure?

> GROUP - B
> Answer any three of the following. $\quad 3 \times 8=24$
8. Show that the rate constant of a diffusion controlled bimolecular reaction depends linearly on the sum of diffusion coefficients of the two reaction components.
9. Derive the relation between viscosity coefficient of a liquid and diffusion coefficient of a Brownian particle.
10. Show that the flux of reactants crossing an one-dimensional energy barrier depends inversely on the viscosity of the medium under overdamped condition.
11. Set up the Langevin equation for a Brownian particle under the action of a constant external force G. Explain all the terms of the equation.

Write down the corresponding equation for probability distribution function for the position variable of the particle for large friction.

For clarity and presentation 1 mark.

