	Utech
Name:	
Roll No.:	To Again of the Samuelage Tail Confident
Invigilator's Signature :	

CS/INT.PBIR (CHE)/SEM-1/CH-413/2010-11 2010-11

EQUILIBRIUM AND NON-EQUILIBRIUM THERMODYNAMICS

Time Allotted: 3 Hours Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Answer any five questions.

- 1. In a closed composite system of γ -components a rigid diathermal partition separates the system into two values (1 and 2). The wall is permeable to the component-1 only. Based on the thermodynamic postulates, establish the conditions for equilibrium, assuming that initially the extensive variables of the subsystems 1 and 2 are different in magnitudes and the adaptive and impermeability constraints are relaxed slowly. In which direction will there be a mass flow?
- 2. Show that entropy maximum and energy minimum postulates for equilibrium in a thermodynamic system are equivalent. 5
- 3. Explain the idea of Legendre transformation geometrically with reference to a function y = y(x). What is meant by the inverse transformation ? Perform Legendre transformation and the inverse transformation of a function $y = Ae^{Bx}$ taking A = 2, B = 0.5. What are the different Legendre transforms of energy U?

40864 [Turn over

CS/INT.PBIR (CHE)/SEM-1/CH-413/2010-11

- Formulate the stability criteria of thermodynamic system in energy representation and extend the results to the Legendre transform of energy.
- 5. Explain what is meant by the critical temperature (T_{cr}) ? Using Landau's theory show that the order parameters spontaneously become non-zero and grow as $(T_{cr}-T)^{\frac{1}{2}}$ for $T < T_{cr}$. What happens to the order parameter for $T > T_{cr}$? 5
- 6. The fundamental relation for a given thermodynamic system is $S = \left(A \ U^2 \ V \ N^2\right)^{\frac{1}{5}}$ with the constant A > 0. Find the equation of state. How are the intensive parameters $\frac{\mu}{T}, \ \frac{1}{T}$ and $\frac{\rho}{T}$ are related?
- 7. Two identical systems, 1 and 2 have heat capacities of the form $C(T) = DT^n$ (n > 0). Show that the system which are constrained to have constant volume and mole numbers are characterized by energy $U = U_0 + DT^{(n+1)}/(n+1)$ and entropy $S = S_0 + DT^n/(n)$. If the initial temperatures of the two systems were T_{10} and T_{20} , respectively, what would be the maximum delivered work?
- 8. A particular system obeys the two equations of state $T = 3As^2/v$ and $P = 3As^3/v^2$ where A is a constant s = molar entropy, v = molar volume. Find the fundamental equation of the system.

40864 2

GROUP - B

Answer any three questions.

- 10. Starting form $\frac{\partial(\rho s)}{\partial t} = -\vec{\nabla} \cdot \vec{J}_s + \sigma$, where \vec{J}_s is the entropy flux vector and σ is the entropy production. (Ignore mass flow, charge flow and chemical reaction). For a heat flow, show that ds = des + dis i.e., the total change in entropy is contributed by the two terms. Comment on the second law in this context.
- 11. Show that for a chemical reaction $\alpha A + \beta B = \gamma D$. The rate of advancement $\left(\frac{dz}{dt}\right)$ is linearly proportional to the affinity A of the chemical reaction. $8\frac{1}{3}$
- 12. a) Starting from Boltzmann equation for entropy and probability, establish the form of probability distribution of fluctuations $\{\alpha_i\}$ for small deviation from equilibrium.
 - b) Using the above result calculate the average $<\alpha_i,\,X_j>$ where X_j is the j-th thermodynamic force. $4\frac{1}{3}$

40864