
 Name :
 Roll No.
 \qquad
 \qquad
 CS/INT.PBIR (CHE)/SEM-1/CH-413/2010-11 2010-11 EGUILIBRIUM AND NON-EGUILIBRIUM THERMODYNAMICS

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Answer any five questions.

1. In a closed composite system of γ-components a rigid diathermal partition separates the system into two values (1 and 2). The wall is permeable to the component-1 only. Based on the thermodynamic postulates, establish the conditions for equilibrium, assuming that initially the extensive variables of the subsystems 1 and 2 are different in magnitudes and the adaptive and impermeability constraints are relaxed slowly. In which direction will there be a mass flow?
2. Show that entropy maximum and energy minimum postulates for equilibrium in a thermodynamic system are equivalent.5
3. Explain the idea of Legendre transformation geometrically with reference to a function $y=y(x)$. What is meant by the inverse transformation ? Perform Legendre transformation and the inverse transformation of a function $y=A e^{B x}$ taking $A=2, B=0 \cdot 5$. What are the different Legendre transforms of energy U ?
4. Formulate the stability criteria of thermodynaqic systen in energy representation and extend the resultsto the Legendre transform of energy.
5. Explain what is meant by the critical temperature $\left(T_{c r}\right)$? Using Landau's theory show that the order parameters spontaneously become non-zero and grow as $\left(T_{c r}-T\right)^{\frac{1}{2}}$ for $T<T_{c r}$. What happens to the order parameter for $T>T_{c r} ? 5$
6. The fundamental relation for a given thermodynamic system is $S=\left(A U^{2} V N^{2}\right)^{\frac{1}{5}}$ with the constant $A>0$. Find the equation of state. How are the intensive parameters $\frac{\mu}{T}, \frac{1}{T}$ and $\frac{\rho}{T}$ are related? $\quad 5$
7. Two identical systems, 1 and 2 have heat capacities of the form $C(T)=D T^{n}(n>0)$. Show that the system which are constrained to have constant volume and mole numbers are characterized by energy $U=U_{0}+D T^{(n+1)} /(n+1)$ and entropy $S=S_{0}+D T^{n} /(n)$. If the initial temperatures of the two systems were T_{10} and T_{20}, respectively, what would be the maximum delivered work?
8. A particular system obeys the two equations of state $T=3 A s^{2} / v$ and $P=3 A s^{3} / v^{2}$ where A is a constant $s=$ molar entropy, $v=$ molar volume. Find the fundamental equation of the system.

9. Show that for a chemical reaction the rate of change of entropy density (ρs) is given by $\frac{\mathrm{d}}{\mathrm{d} t}(\rho s)=\frac{A}{T V}\left(\frac{\mathrm{~d} z}{\mathrm{~d} t}\right)$ where A is the affinity and $\left(\frac{d z}{d t}\right)$ is the rate of advancement of the reaction (Ignore all other rate processes like, heat flow, charge flow, mass flow).
10. Starting form $\frac{\partial(\rho s)}{\partial t}=-\vec{\nabla} \cdot \vec{J}_{s}+\sigma$, where \vec{J}_{s} is the entropy flux vector and σ is the entropy production. (Ignore mass flow, charge flow and chemical reaction). For a heat flow, show that $\mathrm{d} s=đ_{e} S+\mathrm{đ}_{i} S$ i.e., the total change in entropy is contributed by the two terms. Comment on the second law in this context.
11. Show that for a chemical reaction $\alpha A+\beta B=\gamma D$. The rate of advancement $\left(\frac{\mathrm{d} z}{\mathrm{~d} t}\right)$ is linearly proportional to the affinity A of the chemical reaction.
12. a) Starting from Boltzmann equation for entropy and probability, establish the form of probability distribution of fluctuations $\left\{\alpha_{i}\right\}$ for small deviation from equilibrium.
b) Using the above result calculate the average $\left.<\alpha_{i}, X_{j}\right\rangle$ where X_{j} is the j-th thermodynamic force. $4 \frac{1}{3}$
