	Utech
Name:	
Roll No.:	A Deas of Exercising and Explored
Invigilator's Signature :	

CS/M.TECH (ECE-VLSI)/SEM-2/MVLSI-205B/2013 2013

LOW POWER VLSI DESIGN

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any five of the following: $5 \times 14 = 70$

- 1. a) Write the expression for different components of power dissipation in CMOS integrated circuit.
 - b) Why low power VLSI design is important?
 - c) Derive a mathematical expression and explain with a block diagram how parallel architecture with voltage scaling helps to reduce power dissipation in low power VLSI design. 4 + 2 + 8
- 2. a) What do you mean by signal probability? Given $y = x_1 \ x_2 + x_1 \ x_3$, where x_1 , x_2 and x_3 are mutually independent. Compute the signal probability P(y).
 - b) What do you mean by switching activity? Write the different techniques to reduce the switching activity of a CMOS circuit. 1 + 4 + 2 + 7

30035 (M.Tech)

[Turn over

- 3. a) Using schematic cross-section, explain the leakage power dissipation of a static CMOS inverter. How variable threshold helps to reduce sub-threshold leakage current?
 - b) Draw the block diagram of a typical low power chip based on variable-threshold CMOS circuits and explain its operation. 6+3+5
- 4. a) Explain the principle of adiabatic logic circuit for low power design.
 - b) How logic encoding helps to reduce power consumption?
 - c) Describe the principle of signal gating for low power design. 5 + 5 + 4
- 5. a) Explain three major sources of power consumption in a memory chip.
 - b) Explain the principle of a six-transistor SRAM cell.
 - c) Write the different techniques to reduce power dissipation in clock networks. 4 + 5 + 5
- 6. a) What is signal entropy? Explain the method of power estimation using entropy.
 - b) Explain different techniques of software power estimation. 2 + 5 + 7

- 7. a) How the size of transistor and gate affect the amount of power dissipation in CMOS circuit?
 - b) Explain how voltage scaling helps to reduce power dissipation in a CMOS integrated circuit.
 - c) What do you mean by glitch? How power dissipation due to glitch can be reduced? 5 + 4 + 5
- 8. Write short notes on any *two* of the following : 2×7
 - a) Power reduction employing operator reduction
 - b) Pass Transistor Logic circuits for low power design
 - c) Multi-threshold CMOS circuits
 - d) Pre-computation logic.

-