

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer all questions.

1. a) Compute 8 pt DFT of the sequence :
$x(n)=\{1,2,3,4,4,3,2,1\}$ using any FFT algorithm.
b) Find the linear convolution using circular convolution for the two sequences:
$x(n)=\{1,2,-1,2,3,-2,-3,-1,1,1,2,-1\}$
$h(n)=\{1,2,3\}$.
c) Compute the circular convolution of the following two sequences:
$x(n)=\{1,2,2,1\}$,
$h(n)=\{1,2,1,1\}$.
$6+4+4$

30296 (M.Tech.)
[Turn over

CS/M.Tech (ECE-VLSI)/SEM-2/MVLSI-202/2011
2. a) Sketch the magnitude response of Butterwarth LPF filter \& derive an expression for order of such a filter
b) Design a digital Butterworth filter using the following specifications using impulse invariant method : $0 \cdot 9<\mathrm{H}(\mathrm{jw})<1$ for $0<\mathrm{w}<0 \cdot 2 \pi$ $\mathrm{H}(\mathrm{jw})<0.2$ for $0.4 \pi<\mathrm{w}<\pi$.
c) What are the advantages \& disadvantages of bilinear transformation? $5+5+4$
3. a) The output and input of a recursive DT LTI system are related by the equation
$y(n)=0 \cdot 1 y(n-1)+0 \cdot 2 y(n-2)+3 x(n)$

$$
+3 \cdot 6 x(n-1)+0 \cdot 6 x(n-2) .
$$

Derive and draw the direct form-II structure for realising the system.
b) Derive and sketch the cascade and parallel structure of $\begin{array}{llr}\text { the } \begin{array}{c}\text { system with } \\ \text { transfer }\end{array} & \text { function } \\ H(z)=\frac{2(z+2)}{(z-0 \cdot 1)(z+0 \cdot 5)(z+0 \cdot 4)} . & 5+9\end{array}$
b) Find the system function \& impulse response of the system described by $y(n)=x(n)+2 x(n-1)-4 x(n-2)+x(n-3)$.
c) Find the inverse Z-transform of

$$
X(Z)=Z\left(Z^{2}-4 Z+5\right) /(Z-3)(Z-2)(Z-1)
$$

d) Prove that an LTI system is BIBO stable if the ROC system function includes the unit circle. $2+5+4+3$
5. Write short notes on any two of the following :
a) DIT algorithm
b) Architecture of Digital Signal Processor
c) Design of linear phase FIR filter
d) Physical significance of Z-transform.

