	Uffech
Name :	
Roll No.:	A Dear of Sanding and Sandra
Inviailator's Signature :	

CS/M.TECH(VLSI)/SEM-1/MVLSI-101/2011-12 2011

ADVANCED ENGINEERING MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Question No. 1 is compulsory. Answer any four from the rest.

 $5 \times 14 = 70$

- 1. a) If A and B are two independent events then show that A and B c are also independent.
 - b) If $f(x, y) = \sqrt{|xy|}$ show that

$$f_{x}(x,y) = \begin{cases} \frac{1}{2} \sqrt{\frac{|y|}{|x|}} & \text{if } x > 0 \\ -\frac{1}{2} \sqrt{\frac{|y|}{|x|}} & \text{if } x < 0 \end{cases}$$

$$\text{and } f_{y}(x,y) = \begin{cases} \frac{1}{2} \sqrt{\frac{|x|}{|y|}} & \text{if } y > 0 \\ -\frac{1}{2} \sqrt{\frac{|x|}{|y|}} & \text{if } y < 0 \end{cases}$$

c) Evaluate $\int \frac{dz}{(z-a)^n}$ for $n = 2, 3, 4, \dots$ where c is a closed curve containing the point z = a.

40504 [Turn over

CS/M.TECH(VLSI)/SEM-1/MVLSI-101/2011-12

- 2. a) Examine the maxima and minima of the function $f(x, y) = 2x^2 xy + 2y^2 20x$.
 - b) Let y = F(x, t), where F is a differentiable function of two independent variables x and t which are related to variables u and v by the relations u = x + ct, v = x ct.

Prove that $\frac{\partial^2 y}{\partial^2 x^2} - \frac{1}{c^2} \frac{\partial^2 y}{\partial^2 t^2} = 0$ can be transformed into $\frac{\partial^2 y}{\partial u \partial v} = 0$

- 3. a) Find the stationary points of $f(x, y, z) = x^2 + y^2 + z^2$ subject to the condition $x^2 + y^2 + z^2 = a^2$, where x, y, z are positive. Also, find the maximum value of the same function subject to the condition $x^2 + y^2 + z^2 = a^2$ by application of Lagrangian multiplier method.
 - b) If f(0) = 0 and $f'(x) = \frac{1}{1+x^2}$ then prove without using method of integration that f(x) + f(y) =**Error!**)

7

4. a) The value of $\sin x$ for different values of x are given below. Form a difference table and from this table find $\sin 32^{\circ}$ and $\sin 53^{\circ}$ using proper formula.

x°	30	35	40	45	50	55		
sin x	0.5000	0.5736	0.6428	0.7071	0.7660	0.8192		

b) Find the polynomial f(x) and hence calculate f(5.5) for the given data :

х	0	2	3	4	7
f(x)	1	47	97	251	477

40504

- 5. a) Find the convergence of the Newton-Raphson-method. Using Newton-Raphson method, obtain iteration formula for the reciprocal of a number N and hence find the value of $\frac{1}{22}$, correct to three significant figures. 7
 - b) Using the modified Euler's method find y ($1 \cdot 2$) where $\frac{dy}{dx} = \frac{x+y}{2}$, y (1) = $3 \cdot 595$ and h = $0 \cdot 1$.
- 6. a) Expand $f(z) = \frac{1}{z^2(z-i)}$ as a Laurent's series about i and hence find the residue there.
 - b) $\int_{0}^{2\pi} \frac{1 + \sin \theta}{3 + \cos \theta} d\theta \text{ using method of residues.}$ 7
- 7. a) Evaluate $\int_{0}^{2+t} (\overline{z})^{2} dz$ along the following paths 7
 - i) the straight line $y = \frac{x}{2}$
 - ii) first along the real axis to 2 and then vartically to (2 + i)
 - b) Determine the analytic function whose real part is $e^{x}(x \cos y y \sin y)$.
- 8. a) X and Y stand in a queue at random with 10 other people. What is the probability that there are exactly 3 people between X and Y?
 - b) There are 3 good and 1 bad coins. The bad one has head on both sides. A coin is chosen randomly and tossed 4 times. If head occurs all the 4 times what is the probability that the bad coin has been chosen for toss?

CS/M.TECH(VLSI)/SEM-1/MVLSI-101/2011-12

- 9. a) If the daily wage of 10,000 workers in a factory follows normal distribution with mean and standard deviation of Rs. 70 and Rs. 5 respectively, find the expected number of workers whose daily wages are:
 - i) between Rs. 66 and Rs. 72
 - ii) more than Rs. 72.

Here it is given that :
$$\frac{1}{\sqrt{2 \pi}} \int_{0}^{0.4} e^{-t^2/2} dt = 0.1554$$

and

$$\frac{1}{\sqrt{2\pi}} \int_{0}^{0.8} e^{-t^2/2} dt = 0.2881.$$
 7

b) Let X denote the number of misprints on a page in a certain book. Assume that the random variable X follows Poisson distribution. If $E(X^2) = 6$ then find out the probability that a randomly chosen page will have at least one misprint.