

Invigilator's Signature :
CS/M.TECH(VLSI)/SEM-1/MVLSI-101/2011-12

2011

ADVANCED ENGINEERING MATHEMATICS

Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Question No. 1 is compulsory. Answer any four from the rest.

$$
5 \times 14=70
$$

1. a) If A and B are two independent events then show that A and B^{c} are also independent.
b) If $f(x, y)=\sqrt{|x y|}$ show that

$$
\begin{array}{r}
f_{x}(x, y)=\left\{\begin{array}{r}
\frac{1}{2} \sqrt{\frac{|y|}{|x|}} \text { if } x>0 \\
-\frac{1}{2} \sqrt{\frac{|y|}{|x|}} \text { if } x<0
\end{array}\right. \\
\operatorname{and} f_{y}(x, y)=\left\{\begin{array}{r}
\frac{1}{2} \sqrt{\frac{|x|}{|y|}} \text { if } y>0 \\
-\frac{1}{2} \sqrt{\frac{|x|}{|y|}} \text { if } y<0
\end{array}\right.
\end{array}
$$

c) Evaluate $\int \frac{d z}{(z-a)^{n}}$ for $n=2,3,4, \ldots \ldots$. where c is C a closed curve containing the point $z=a$.
2. a) Examine the maxima and minima of the function $f(x, y)=2 x^{2}-x y+2 y^{2}-20 x$.
b) Let $y=F(x, t)$, where F is a differentiable function of two independent variables x and t which are related to variables u and v by the relations $u=x+c t, v=x-c t$. Prove that $\frac{\partial^{2} y}{\partial^{2} x^{2}}-\frac{1 \partial^{2} y}{c^{2} \partial^{2} t^{2}}=0$ can be transformed into $\frac{\partial^{2} y}{\partial u \partial v}=0$
3. a) Find the stationary points of $f(x, y, z)=x^{2} y^{2} z^{2}$ subject to the condition $x^{2}+y^{2}+z^{2}=a^{2}$, where x, y, z are positive. Also, find the maximum value of the same function subject to the condition $x^{2}+y^{2}+z^{2}=a^{2}$ by application of Lagrangian multiplier method.
b) If $f(0)=0$ and $f^{\prime}(x)=\frac{1}{1+x^{2}}$ then prove without using method of integration that $f(x)+f(y)=$ Error!)
4. a) The value of $\sin x$ for different values of x are given below. Form a difference table and from this table find $\sin 32^{\circ}$ and $\sin 53^{\circ}$ using proper formula.

x°	30	35	40	45	50	55
$\sin x$	0.5000	0.5736	0.6428	0.7071	0.7660	0.8192

b) Find the polynomial $f(x)$ and hence calculate $f(5 \cdot 5)$ for the given data :

x	0	2	3	4	7
$f(x)$	1	47	97	251	477

5. a) Find the convergence of the Newton-Raphsonemethod. Using Newton-Raphson method, obtain-iteration formula for the reciprocal of a number N and hence find the value of $\frac{1}{22}$, correct to three significant figures. 7
b) Using the modified Euler's method find $y(1 \cdot 2)$ where $\frac{d y}{d x}=\frac{x+y}{2}, y(1)=3 \cdot 595$ and $h=0 \cdot 1$.
6. a) Expand $f(z)=\frac{1}{z^{2}(z-i)}$ as a Laurent's series about i and hence find the residue there.
b) $\int^{2 \pi} \frac{1+\sin \theta}{3+\cos \theta} d \theta$ using method of residues. 7 0
7. a) Evaluate $\int_{0}^{2+i}(\bar{z})^{2} d z$ along the following paths 7 i) the straight line $y=\frac{x}{2}$
ii) first along the real axis to 2 and then vartically to $(2+i)$
b) Determine the analytic function whose real part is $e^{x}(x \cos y-y \sin y)$.
8. a) X and Y stand in a queue at random with 10 other people. What is the probability that there are exactly 3 people between X and Y ?
b) There are 3 good and 1 bad coins. The bad one has head on both sides. A coin is chosen randomly and tossed 4 times. If head occurs all the 4 times what is the probability that the bad coin has been chosen for toss ?

7
9. a) If the daily wage of 10,000 workers in a factory follows normal distribution with mean and standard deviation-of Rs. 70 and Rs. 5 respectively, find the expected number of workers whose daily wages are :
i) between Rs. 66 and Rs. 72
ii) more than Rs. 72 .

Here it is given that $: \frac{1}{\sqrt{2 \pi}} \int_{0}^{0 \cdot 4} e^{-t^{2} / 2} \quad d t=0 \cdot 1554$
and

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{0}^{0 \cdot 8} e^{-t^{2} / 2} d t=0 \cdot 2881 \tag{7}
\end{equation*}
$$

b) Let X denote the number of misprints on a page in a certain book. Assume that the random variable X follows Poisson distribution. If $E\left(X^{2}\right)=6$ then find out the probability that a randomly chosen page will have at least one misprint.

