

Time Allotted : 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Objective Type Questions)

1. Answer any five questions:
a) Find the Lalace transform of

$$
f(t)=1+2 t-\frac{1}{3} t^{4}
$$

b) Find the inverse Laplace transform of $F(s)=\frac{4 s}{s^{2}-16}$.
c) For an even function of period 2 L , write down the expressions for the Fourier coefficients a_{0} and a_{n}.
d) Write down the Fourier transform of $f^{\prime \prime}(x)$ in terms of the Fourier transform of $f(x)$ and ω.
e) Write the necessary and sufficient condition for a graph to posses an Euler trail.
f) Define a bipartite graph and a complete bipartite graph illustrating by diagrams.

g) Define isomorphism of graphs. Draw two graphs which are isomorphic.
h) What do you mean by chromatic polynomial of a graph ? Write the chromatic polynomial of a null graph with n vertices.

GROUP - B

(Long Answer Type Questions)

$$
\text { Answer any six of the following. } \quad 6 \times 10=60
$$

2. a) Find the Laplace transform of the following function $f(t)=\left\{\begin{array}{rlr}2 & \text { if } & 0<t<\pi \\ 0 & \text { if } & \pi<t<2 \pi \\ \sin t & \text { if } & t>2 \pi\end{array}\right.$
b) Determine the inverse Laplace transform of the function

$$
F(s)=\ln \left(1+\frac{\omega^{2}}{s^{2}}\right)
$$

$$
5+5
$$

3. a) Use the convolution property of the Laplace transform to solve the integral equation :

$$
f(t)=e^{-t}+\int_{0}^{t} f(t-\tau) \mathrm{d} \tau
$$

b) Solve the following differential equation by using Laplace transform :
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+16 y=1+t$
$y(0)=-2, y^{\prime}(0)=1$.
4. a) Expand $f(x)=\cos x$ as half-range Fourier sine series in the range $0 \leq x \leq \pi$.
b) Find the Fourier sine integral representation of the function $f(x)=\sin x$, if $0 \leq x \leq \pi$

$$
=0, \quad \text { if } x>\pi . \quad 5+5
$$

5. a) Find the Fourier cosine and sine transform of the function $f(x)=k$, if $0<x<a$

$$
=0, \text { if } x>a
$$

b) Calculate the Fourier transform of $f(x)=x e^{-x^{2}}$.

Given that $F T\left(e^{-x^{2}}\right)=\frac{1}{\sqrt{2}} e^{\frac{-\omega^{2}}{4}}$. $6+4$
6. a) Prove the necessary and sufficient condition that a given connected graph is semi-Eulerian.
b) Examine whether a simple graph exists for the degreesequence $(1,1,3,3,3,4,5)$. If it exists, draw it. 644
7. a) Define planar graph.
b) Draw a 4 -vertex complete graph and show that it is selfdual.
c) Examine whether the following graph is planar.

$$
2+3+5
$$

8. State and prove five-colour theorem.
9. a) Prove that if G^{\prime} is a subgraph of G, then $X\left(G^{\prime}\right) \leq X(G)$.
b) Prove that a graph with one or more edges is 2 -chromatic iff it has no cycle of odd degree.
c) Find he chromatic polynomial of C_{4}.
$2+6+2$

