

CS/M.Tech(SE)/SEM-2/SE-203/2013

2013

THEORY OF ELASTICITY \& PLASTICITY

Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
GROUP - A

$$
\text { Answer any four questions. } \quad 4 \times 5=20
$$

1. What do you mean by plane stress condition ? Write down the constitutive relations for a body which is in a state of plane stress.
2. A trial function $\phi=-c x y$ satisfies the bi-harmonic equation $\nabla^{2} \nabla^{2} \phi=0$. Show that this potential function represents a case of pure shear.
3. With reference to Cartesian coordinate system the components of the stress (in MPa) tensor at a point in a continuous body are

$$
\sigma=\left[\begin{array}{rrr}
20 & 40 & 30 \\
40 & 0 & 5 \\
30 & 5 & -10
\end{array}\right]
$$

Determine the traction vector \vec{t} and its normal and tangential components at a point on the plane $x+2 y+3 z=0$, passing through the point.
4. Derive the equilibrium equation in 2-dimensional Gartesian coordinate system.

5. What do you mean by J_{2} plasticity ?

GROUP - B

Answer any one question.

$$
1 \times 20=20
$$

6. For a cantilever narrow beam (width h and depth d) subjected to end load P, using Airy's stress function find the expression for the stress components as well as for the displacement components within the beam.
7. a) Construct a suitable functional whose Euler-Lagrange equation is
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ in $0 \leq x, y \leq 1$
subject to the boundary conditions $u=0$ on $x=0,1$; $y=0$ and $u=\sin \pi x$ on $y=1$.
b) Assume $\quad \phi_{0}(x, y)=y \sin \pi x, \quad \phi_{1}(x, y)=\sin \pi x \sin \pi y$, $\phi_{2}(x, y)=\sin \pi x \sin 2 \pi y$. Using Ritz method find the values of c_{1}, c_{2} and u^{h}, where $u^{h}(x, y)=\phi_{0}(x, y)+c_{1} \phi_{1}(x, y)+c_{2} \phi_{2}(x, y)$.

8. Show that the following stress components satisfy the equation of equilibrium with zero body force, but are not solution to a problem of elasticity :

$$
\begin{aligned}
& \sigma=c\left[y^{2}+v\left(x^{2}-y^{2}\right)\right], \sigma_{y}=c\left[x^{2}+v\left(y^{2}-x^{2}\right)\right] \\
& \sigma_{x}=c v\left(x^{2}+y^{2}\right), \tau_{x y}=-2 v x y, \tau_{y z}=\tau_{x z}=0
\end{aligned}
$$

9. Find the value of torsional constant for a beam with elliptic section $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a and b are semi-axes respectively.
10. Functional 1: $\Pi_{c}(u, N)=-\frac{1}{2} \int_{0}^{L} \frac{N^{2} \mathrm{~d} x}{A E}+\int_{0}^{L} N \frac{\partial u}{\partial x} \mathrm{~d} x-\int_{0}^{L} u p \mathrm{~d} x$ Functional 2: $\Pi(u)=\int_{0}^{L} \frac{1}{2} A E\left(\frac{\partial u}{d x}\right)^{2} \mathrm{~d} x-\int_{0}^{L} u p \mathrm{~d} x$

Assume p is a constant term with value p_{0}. For this given problem the interpolation functions are as follows :
A. $u^{h}(x)=u_{1}\left(1-\frac{x}{L}\right)+u_{2}\left(\frac{x}{L}\right)$
B. $N^{h}(x)=\alpha$ where α is constant.

CS/M.Tech(SE)/SEM-2/SE-203/2013
a) Using interpolation functions A and discrete equations using functional 1 .

b) Repeat the same procedure using interpolation function A and functional 2.
c) Eliminate and compare two discrete sets of equations.
11. a) What is 'incremental plastic strain theory'?
b) A piece of metal is compressed in a rigid die, as schematically shown in the figure. Assuming that the material is free to expand in the z-direction, find the pressure p_{0} at the start of plastic deformation. The yield stress is σ_{Y} and Poisson's ratio is v. The material is of von Mises type.

