	Utech
Name:	
Roll No.:	
Invigilator's Signature :	

CS/M.Tech(SE)/SEM-2/SE-203/2013 2013

THEORY OF ELASTICITY AND PLASTICITY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* of the following. $5 \times 14 = 70$

- 1. a) Using basic principles of theory of elasticity, prove that $e = \frac{1-2 \text{ v}}{E}\theta$, where $e = \varepsilon_x + \varepsilon_y + \varepsilon_z$ and $\theta = \sigma_x + \sigma_y + \sigma_z$. E and v are modulus of elasticity and Poisson's ratio of the material.
 - b) From the above expression, find modulus of volume expansion.
 - c) Develop the expression of stress components i.e. σ_x , σ_y , σ_z in terms of ε_x , ε_y and ε_z .
- 2. a) What is the difference between a plane stress problem and plane strain problem?
 - b) Derive the differential equation of equilibrium for twodimensional problems. 4
 - c) Derive the condition of compatibility in plane-stress situation.
 - d) Find the general equation combining (b) and (c). 5

30482(M.Tech) [Turn over

- 3. Find the equation of deflection curve for a cantilever beam of length l cross-sectional dimension ($1 \times 2C$) subjected to concentrated load P at the free end.
- 4. a) Derive the differential equation of equilibrium of twodimensional problem in polar co-ordinates. 7
 - b) Using the following expressions of σ_r , σ_θ , $\tau_{r\theta}$ in terms of stress function ϕ , find the stress distribution in a hollow circular cylinder having inner and outer radii as a and b subjected to internal and external pressure p_i and p_o respectively.

$$\sigma_r = \frac{1}{r} \left(\frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} \right)$$

$$\sigma_{\theta} = \frac{\partial^2 \Phi}{\partial r^2}$$

$$\tau_{r\theta} = \frac{1}{r^2} \left(\frac{\partial \phi}{\partial \theta} \right) - \frac{1}{r} \frac{\partial^2 \phi}{\partial r \partial \theta}.$$

- 5. a) What do you mean by principal stress and principal plane?
 - b) A square element of a thin plate is subjected to following stress components :

$$\sigma_x$$
 = -50 N/mm², σ_y = +150 N/mm², τ_{xy} = 100 N/mm². Draw Mohr's circle and find the magnitude and direction of principal stresses.

7

c) Derive the expression from which the magnitude of principal stresses can be calculated in three dimensional problems.

30482(M.Tech)

- 6. a) Derive the expression of M_y, M_{ep} and M_{iii} for a rectangular beam cross-section ($b \times d$
 - b) Derive an expression relating torsion, twist and shear stress for a circular shaft.
- 7. a) What do you mean by yield criteria?
 - b) Explain Trescas and Von Mises yield criteria. 8
 - c) What is the difference between Trescas' and Von Mises' yield criteria?
- 8. a) What do you mean by stress tensor? 2
 - b) Write short notes on the following:
 - (i) Stress invariants
 - (ii) Stress deviator. 6
 - c) The state of stress at a point is given by

$$\sigma_{ij} = \left[\begin{array}{cccc} 30 & 45 & 60 \\ 45 & 20 & 50 \\ 60 & 50 & 10 \end{array} \right]$$

Determine the stress invariants I_1, I_2, I_3 and j_2 . 6