

CS/M.Tech(SE)/SEM-2/SE-203/2013 2013 THEORY OF ELASTICITY AND PLASTICITY

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

$$
\text { Answer any five of the following. } \quad 5 \times 14=70
$$

1. a) Using basic principles of theory of elasticity, prove that $e=\frac{1-2 v}{E} \theta$, where $e=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}$ and $\theta=\sigma_{x}+\sigma_{y}+\sigma_{z}$. E and v are modulus of elasticity and Poisson's ratio of the material.
b) From the above expression, find modulus of volume expansion.
c) Develop the expression of stress components i.e.
$\sigma_{x}, \sigma_{y}, \sigma_{z}$ in terms of $\varepsilon_{x}, \varepsilon_{y}$ and ε_{z}.
2. a) What is the difference between a plane stress problem and plane strain problem?
b) Derive the differential equation of equilibrium for two-
dimensional problems.
c) Derive the condition of compatibility in plane-stress situation.
d) Find the general equation combining (b) and (c).5
3. Find the equation of deflection curve for a cantilever bean of length l cross-sectional dimension $(1 \times 2 \mathrm{C})$ subjected to concentrated load P at the free end.
4. a) Derive the differential equation of equilibrium of twodimensional problem in polar co-ordinates.
b) Using the following expressions of $\sigma_{r}, \sigma_{\theta}, \tau_{r \theta}$ in terms of stress function ϕ, find the stress distribution in a hollow circular cylinder having inner and outer radii as a and b subjected to internal and external pressure p_{i} and p_{o} respectively.

$$
\begin{align*}
& \sigma_{r}=\frac{1}{r}\left(\frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}\right) \\
& \sigma_{\theta}=\frac{\partial^{2} \phi}{\partial r^{2}} \\
& \tau_{r \theta}=\frac{1}{r^{2}}\left(\frac{\partial \phi}{\partial \theta}\right)-\frac{1}{r} \frac{\partial^{2} \phi}{\partial r \partial \theta} . \tag{7}
\end{align*}
$$

5. a) What do you mean by principal stress and principal plane?
b) A square element of a thin plate is subjected to following stress components :
$\sigma_{x}=-50 \mathrm{~N} / \mathrm{mm}^{2}, \quad \sigma_{y}=+150 \mathrm{~N} / \mathrm{mm}^{2}, \quad \tau_{x y}=100 \mathrm{~N} / \mathrm{mm}^{2}$. Draw Mohr's circle and find the magnitude and direction of principal stresses.
c) Derive the expression from which the magnitude of principal stresses can be calculated in three dimensional problems. 7
6. a) Derive the expression of $M_{y}, M_{e p}$ and $M_{\text {LUt }}$ for a rectangular beam cross-section $(b \times d 0$.
b) Derive an expression relating torsion, twist and shear stress for a circular shaft.
7. a) What do you mean by yield criteria?
b) Explain Trescas and Von Mises yield criteria.
c) What is the difference between Trescas' and Von Mises' yield criteria?
8. a) What do you mean by stress tensor?
b) Write short notes on the following:
(i) Stress invariants
(ii) Stress deviator.
c) The state of stress at a point is given by

$$
\sigma_{i j}=\left[\begin{array}{lll}
30 & 45 & 60 \\
45 & 20 & 50 \\
60 & 50 & 10
\end{array}\right]
$$

Determine the stress invariants I_{1}, I_{2}, I_{3} and j_{2}.

