|                          | Utech                                          |
|--------------------------|------------------------------------------------|
| Name:                    |                                                |
| Roll No.:                | In Parameter (KE name langer 2 and Experience) |
| Invigilator's Signature: |                                                |

## CS/M.TECH(SE)/SEM-2/SE-202/2013

## 2013

## STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions.  $5 \times 14 = 70$ 

1. a) Define the following:

Ć

- i) Free vibration
- ii) Natural frequency
- iii) Forced vibration.
- b) A structure shown in the figure below is released from an initial displacement of 1 cm with initial velocity of 5 cm/s. Compute damped natural frequency and time history response of the mass.



2 + 9

30478 (M.TECH)

[ Turn over

- a) Derive the expression for magnification factor M for a damped SDOF system subjected to a sinusoidal force.
  - b) What is the value of  $M_{\text{max}}$ ? Derive the value of  $M_{\text{max}}$  and the frequency ratio at which it occurs.
- 3. a) Define Transmissibility. 1
  - b) Derive the expression for transmissibility of a mass-spring-damper system subjected to a harmonic force of  $f_0 \sin \omega t$ .
  - c) A machine of 100 kg mass is supported on spring of total stiffness of 700 kN/m and an unbalanced rotating element, which results in a disturbing force of 350 N at a speed of 3000 revolutions per minute. Assume a damping ratio of  $\xi = 0.2$ .

Determine the following:

- i) Its amplitude of motion due to unbalance
- ii) Transmissibility
- iii) The transmitted force.

6

4. a) Formulate the equation of motion for the three-storey structure shown in the figure below from basic principle:



6

b) Determine the natural frequency of vibration for the above system.



- 5. a) Compute the mode shapes of the structure in **Q. No. 4.** Draw the mode shape diagrams.
  - b) Derive the equation of motion of a typical shear building frame subjected to translational ground motion. 7
- 7. Discuss the concept of Response Spectrum explaining how it is developed. What are PGA & ZPA? How does response spectrum help in assessing the seismic forces on a structure? How do earthquakes affect stiff & flexible structures?
- 8. Define ductility. How can it be incorporated in RC design? What is a shear wall? What are its advantages? Distinguish between static & dynamic analysis w.r.t. IS:1893.

3 + 3 + 3 + 2 + 3

\_\_\_\_\_