Name :
 Roll No.
 \qquad Invigilator's Signature :
 \qquad
 CS/M.Tech-IT(SE)/SEM-1/MSE-104/2009-10 2009

 DISCRETE STRUCTURE

 DISCRETE STRUCTURE}

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.

1. a) Let U denote citizens of West Bengal ; f, g and h are relations defined on U by the following statements :
i) $\quad f(x)$ is the mother of x
ii) $g(x)$ is a daughter of x
iii) $\quad h(x)$ is a wife of x.

Which of the statements define correctly a function from U to U ? Give reasons.
b) Let $\mathrm{A}=\{1,2,3,4,5\}$ and $f: A \varnothing A$ defined by
$f(1)=2, f(2)=2, f(3)=4, f(4)=5$ and
$f(5)=4$. Show that $f f=f$ and find a function $g: A \varnothing A$ such that $g f=f$ and $f g=f$.6

CS/M.Tech-IT(SE)/SEM-1/MSE-104/2009-10
2. a) Define a semi-group ; give an example. Show that if G be a semi-group containing the right identity and every $x \in G$ has its right inverse in G then G is a group.
b) Show that symmetries of the letter ' H ' form a finite group with respect to a suitable composition.
3. a) When is a subgroup H of a group G called normal in G ? If H be normal in G, show that $H a=a H$ for every $a \varepsilon G$.
b) Let $Z(G)=\{x \in G \mid x a=a x$ for all $a \in G\}$.

Show that
i) $Z(G)$ is a subgroup of G
ii) $Z(G)$ is normal in G.
4. a) Define prime ideal in a ring R with the unit element ; prove that in the ring of integers $/ /$ an ideal generated by a prime $p,(p)$, is a prime ideal. 6
b) Let R be a commutative ring; prove that any ideal $I \prod R$ is a prime ideal if and only if R / I is an integral domain.
5. a) In a Boolean Algebra B, if $x / y=1$ and $x \quad y=0$ hold then $y=\bar{x}$ - the complement of $x, x, y \in B$. 7
b) State principle of duality and show that

$$
\overline{\left(\begin{array}{ll}
x & y
\end{array}\right)}=\bar{x} / \bar{y} .
$$

6. a) Define homomorphism between two groups G and G^{\prime}; if $\sigma: G \varnothing G^{\prime}$ be a homomorphism, prove that
i) $\quad \sigma(e)=e^{l}, e$ and e^{l} being the identity element in G and G^{\prime} respectively.
ii) $\quad \sigma\left(a^{-1}\right)=(\sigma(a))^{-1}$ for every $a \varepsilon G$.
iii) if H be a subgroup of G then so also is $\sigma(H) . \quad 8$
b) Let $S_{n}, n \geq 2$ be the symmetric group of degree n; prove that exactly half of the permutations in S_{n} is even and the other half odd.
7. a) Define and illustrate a connected graph ; let G be a graph with p vertices and δ satisfies the inequality $\delta \geq \frac{p-1}{2}$ where δ is the minimum of the degrees of vertices of G. Prove that G is a connected graph. $2+4$
b) Define edge and vertex connectivity of a connected graph. Prove that the vertex connectivity of a graph G cannot exceed the edge connectivity. $2+6$
8. a) Find the generating function of the Fibonacci numbers a_{n}.

7
b) Show that $a_{n}^{2}-a_{n-1} a_{n+1}=(-)^{n}$, where a_{n} is same as in $Q .8(a)$.7

