	Unedh
Name:	
Roll No.:	In Among cly Exercising and Explana
Inviailator's Sianature :	

CS/M.Tech-IT(SE)/SEM-1/MSE-104/2009-10 2009

DISCRETE STRUCTURE

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions. $5 \times 14 = 70$

- 1. a) Let U denote citizens of West Bengal ; f, g and h are relations defined on U by the following statements :
 - i) f(x) is the mother of x
 - ii) g(x) is a daughter of x
 - iii) h(x) is a wife of x.

Which of the statements define correctly a function from U to U? Give reasons.

b) Let $A = \{ 1, 2, 3, 4, 5 \}$ and $f : A \varnothing A$ defined by f(1) = 2, f(2) = 2, f(3) = 4, f(4) = 5 and f(5) = 4. Show that f = f and find a function $g : A \varnothing A$ such that gf = f and fg = f.

920394 [Turn over

CS/M.Tech-IT(SE)/SEM-1/MSE-104/2009-10

- group with respect to a suitable composition.
- 3. a) When is a subgroup H of a group G called normal in G? If H be normal in G, show that Ha = aH for every $a \in G$.
 - b) Let $Z(G) = \{ x \in G | xa = ax \text{ for all } a \in G \}$. Show that
 - i) Z(G) is a subgroup of G
 - ii) Z(G) is normal in G. 5+3
- 4. a) Define prime ideal in a ring R with the unit element; prove that in the ring of integers $\overline{\hspace{1cm}}$ an ideal generated by a prime p, (p), is a prime ideal.
 - b) Let R be a commutative ring; prove that any ideal $I \prod R$ is a prime ideal if and only if R / I is an integral domain.

8

6

5. a) In a Boolean Algebra B, if x/y = 1 and $x \square y = 0$ hold then $y = \overline{x}$ – the complement of x, x, $y \in B$.

920394

$$\overline{(x \square y)} = \overline{x} / \overline{y}$$
.

- 6. a) Define homomorphism between two groups G and G^{I} ; if $\sigma : G \varnothing G^{I}$ be a homomorphism, prove that
 - i) $\sigma(e) = e^{I}$, e and e^{I} being the identity element in G and G^{I} respectively.
 - ii) $\sigma(a^{-1}) = (\sigma(a))^{-1}$ for every $a \in G$.
 - iii) if H be a subgroup of G then so also is $\sigma(H)$. 8
 - b) Let S_n , $n \ge 2$ be the symmetric group of degree n; prove that exactly half of the permutations in S_n is even and the other half odd.
- 7. a) Define and illustrate a connected graph; let G be a graph with p vertices and δ satisfies the inequality $\delta \geq \frac{p-1}{2}$ where δ is the minimum of the degrees of vertices of G. Prove that G is a connected graph. 2+4
 - b) Define edge and vertex connectivity of a connected graph. Prove that the vertex connectivity of a graph G cannot exceed the edge connectivity. 2+6
- 8. a) Find the generating function of the Fibonacci numbers a_n . 7
 - b) Show that $a_n^2 a_{n-1} a_{n+1} = (-)^n$, where a_n is same as in Q. 8 (a).