	/ Ulegh
Name :	A
Roll No.:	A standard O'S amounting and Explained
Inviailator's Signature :	

CS/M.TECH (SE)/SEM-1/SE-103/2011-12

2011 ADVANCED STRUCTURAL ANALYSIS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions. $5 \times 14 = 70$

- 1. a) What is finite element method?
 - b) Write the steps of finite element method.
 - c) Write the advantage and disadvantage of finite element method.
- 2. a) What do you mean by shape function? Write some properties of shape function.
 - b) Derive the shape function for three noded one dimensional element following local co-ordinate system.
- 3. a) Write short notes on 'Jacobian matrix' and its use in finite element analysis of two dimensional problem.
 - b) Explain the terms 'isoparametric element', 'subparametric element', 'super-parametric element'.

40686 Turn over

CS/M.TECH (SE)/SEM-1/SE-103/2011-12

c) Evaluate the following integral by quadrature rule :

$$I = \int_{-1}^{+1} \int_{-1}^{+1} \frac{2+\xi}{3+\xi\eta} \, d\xi \, d\eta.$$

given for sampling points $\xi_i = \pm \left(\frac{1}{\sqrt{3}}\right)$ weight factor $w_i = 1.0$.

- 4. Derive the shape function of three noded triangular element having co-ordinate system of the vertices (2, 3), (7, 5), (5, 12) in global co-ordinate system.
- 5. Analyze the beam shown below by the stiffness matrix:

Assume P = 20kN, W = 3 kN/m, L = 5 m.

6. Analyze the beam shown in the fig. below by flexibility method assuming $P = W_L$.

W = 5 kN/m and L = 4 m.

Draw the SFD and BMD.

- 7. Write short notes on the following:
 - a) Local and global co-ordinate system
 - b) Element stiffness matrix
 - c) Equivalent joint load.
- 8. Solve the differential equation $\frac{d^2u}{dx^2} + u + x = 0, 0 < x < 1$ subject to the boundary conditions u(0) = u(1) = 0 by
 - i) Galerkin approach
 - ii) Least square method.

Assume approximate solution $\tilde{u} = x(1-x) + bx^2(1-x)$.