

CS/M.TECH (SE)/SEM-1/SE-103/2011-12

## 2011

ADVANCED STRUCTURAL ANALYSIS
Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions. $\quad 5 \times 14=70$

1. a) What is finite element method ?
b) Write the steps of finite element method.
c) Write the advantage and disadvantage of finite element method.
2. a) What do you mean by shape function ? Write some properties of shape function.
b) Derive the shape function for three noded one dimensional element following local co-ordinate system.
3. a) Write short notes on 'Jacobian matrix' and its use in finite element analysis of two dimensional problem.
b) Explain the terms 'isoparametric element', 'subparametric element', 'super-parametric element'.

c) Evaluate the following integral by quadrature rule :

$$
\mathrm{I}=\int_{-1}^{+1} \int_{-1}^{+1} \frac{2+\xi}{3+\xi \eta} d \xi d \eta
$$

given for sampling points $\xi_{i}= \pm(1 / \sqrt{3})$ weight factor $w_{i}=1.0$.
4. Derive the shape function of three noded triangular element having co-ordinate system of the vertices $(2,3),(7,5),(5,12)$ in global co-ordinate system.
5. Analyze the beam shown below by the stiffness matrix :


Assume $P=20 \mathrm{kN}, \quad W=3 \mathrm{kN} / \mathrm{m}, \quad L=5 \mathrm{~m}$.
6. Analyze the beam shown in the fig. below by flexibility method assuming $P=W_{L}$.
$W=5 \mathrm{kN} / \mathrm{m}$ and $L=4 \mathrm{~m}$.


Draw the SFD and BMD.

a) Local and global co-ordinate system
b) Element stiffness matrix
c) Equivalent joint load.
8. Solve the differential equation $\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}+u+x=0,0<x<1$ subject to the boundary conditions $u(0)=u(1)=0$ by
i) Galerkin approach
ii) Least square method.

Assume approximate solution $\tilde{u}=x(1-x)+b x^{2}(1-x)$.

