	Uiech\
Name:	A
Roll No.:	An Additional Coll States Straight Stade States and
Inviailator's Signature:	

2012

THEORY OF MACHINING AND GRINDING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Answer any one question

- 1. a) Explain why study of tool geometry is important for obtaining good machinability.
 - b) A tool signature is given by : $0^{\circ}-(-)\ 7^{\circ}-6^{\circ}-6^{\circ}-15^{\circ}-90^{\circ}-0.4\ mm.$

From this tool signature, evaluate the tool setting angles in ASA system for grinding rake face and principal flank surface. Derive the relationships used. 3 + 8

- 2. a) Define a normal plane. How is it different from an orthogonal plane? State the advantage of using NRS of tool signature system. 1 + 2 + 2
 - b) A HSS milling cutter has its flank surface with Archimedian spiral. After reaching its tool life, how this cutter can be made reusable? Discuss the method briefly.
 - c) "In a standard twist drill, rake and clearance angles vary along the cutting edge from its centre towards the periphery". Justify the statement.

40040 [Turn over

GROUP - B

Answer any *two* of the following.

- 3. a) Discuss briefly the mechanism of chip formation in machining.
 - b) Under what machining conditions a ductile material like Aluminium will give discontinuous chips?
 - c) Compare tungsten carbide and ceramic as cutting tool materials.
 - d) Why diamond tool is not generally recommended for machining of ferrous materials? What do you mean by high performance cutting tool? 6+2+3+3
- 4. a) Derive Ernst and Merchant's solution. Explain the cause of necessary modifications in MCD.
 - b) What is the purpose of using chip breakers?
 - c) Sketch a diagram to show the variation of rake angle and clearance angle along the cutting edge of a twist drill.
 - d) During machining with a carbide tool, the wear land size l_w (mm) was found to be related to the cutting speed V (m/min) and tool life T (min) by the following relationship:

$$l_w = 56.5 \times 10^{-8} \ V^{2.4} \ T^{0.6}$$

Assuming $l_w^* = 1.5$ mm as the criterion for tool failure, obtain the tool life equation and evaluate the cutting speed for a tool life of 30 min. 6 + 2 + 3 + 3

40040 2

- 5. a) Derive an expression to show the dependence of CRC on the frictional aspects at the chip tool interface and the orthogonal rake angle.
 - b) Effectiveness of a cutting fluid is a function of the flow rate and direction of flow. Justify the statement.
 - c) State the significance of restricted contact machining.
 - d) During orthogonal machining with an HSS tool, the rake angle was 5°, the underformed chip thickness was 0.25 mm and the width of cut was 4 mm. Taking the shear strength of the work material to be 350 N/mm² and the co-efficient of friction between the chip and the tool to be 0.5, estimate the cutting force and thrust force components.

 5 + 3 + 2 + 4

GROUP - C

Answer any two of the following.

- 6. a) Describe briefly the different methods of application of grinding fluid under different situations.6
 - b) How can surface finish and surface integrity of the product be improved in grinding?
 - c) The wheel is given an infeed of 25 μm in horizontal surface grinding. The stiffness factor is K=0.3. After 10 spark-out passes without further in feed, what is the size error due to system deflection?
 - d) Describe different factors for selecting grinding wheel for any work.

40040 3 [Turn over

7. a) b)	a)	What is meant by grindability and how can it	be
		assessed and improved?	7
	b)	Why does grinding wheel need balancing, truing ar	ıd
		dressing before use ?	2
	c)	Derive the maximum uncut grit depth of cut (hi	n)
		assuming the abrasive to be square pyramid with ap-	ex
		angle of 120°.	8
8. a	a)	Write short notes on the following:	
		i) Creep feed grinding	
		ii) High-efficiency deep grinding (HEDG)	2
b) c) d)	b)	What are the possible causes and effects of vibration	in
		grinding?	3
	c)	What is self-excited vibration? Explain van der Pa	l's
		model of vibration for machining.	2
	d)	What is high speed machining? Explain its advantag	es
		and disadvantages.	3
9. a) b)	a)	Derive Gilbert's model for economic tool life.	7
	b)	Derive the formula $lc = (a. ds)^{\frac{1}{2}}$ for surface grinding	g
		where lc = arc length of contact, a = infeed ar	ıd
		ds = grinding wheel diameter.	3
	c)	Write short notes on the following:	
		i) G-ratio	
		ii) Grinding Temperature.	4

40040 4