

CS/M. Tech (PE)/SEM-1/PEM-102/2011-12 2011

ADVANCES IN JOINING AND FORMING PROCESS
Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer five questions taking at least one from each Group.
GROUP - A
Answer minimum 1 question out of the following

1. a) Deduce the expression for three dimensional (3-D) Mohr Circle and from the expression clearly draw the circles with labels.
b) Discuss the failure criteria given by Von-Mises and Tresca. 4
c) Write three dimensional equilibrium equation for stress taking body forces in consideration.

2
2. a) A stress Tensor is given by,

$$
T_{i j}=\left(\begin{array}{ccc}
10 & 4 & -6 \\
4 & -6 & 8 \\
-6 & 8 & 14
\end{array}\right) M P a
$$

From the stress tensor, determine
i) stress invariants
ii) principal stress
iii) the direction of largest principal stress. $3+6+2$

b) Deduce Hencky's Equation for slip lines.
3. a) A cylindrical lead alloy bittet of 50 mindiameter and 100 mm length is extruded to a final diameter of 25 mm by using a direct extrusion process. The average tensile yield stress for the alloy is $12 \mathrm{~N} / \mathrm{mm}^{2}$ Estimate the maximum force required and fraction of the total power lost in friction for this operation.
b) Deduce the necessary mathematical formulae to solve the above problem.
4. a) A strip of lead with initial dimension $24 \mathrm{~mm} \times 24 \mathrm{~mm} \times$ 150 mm is forged between two flat dies to a final size of $6 \mathrm{~mm} \times 96 \mathrm{~mm} \times 150 \mathrm{~mm}$. If the co-efficient of friction between the job and dies is $0 \cdot 25$, determine the maximum forging force. The average yield stress of lead in tension is $7 \mathrm{~N} / \mathrm{mm}^{2}$.8
b) Deduce 2-D compatabity equation for strain. 2
c) The following displacement field represents the deformation of a body in a given domain :
$\hat{u}=\left[x^{2} i+(x+3) j+10 K\right] \times 10^{-2} m$
What is the displacement of the point originally at the position $\hat{r}=(j+k) m$ in undeformed geometry? What is the new position vector ?

GROUP - B

Answer minimum 1 question out of the following
5. a) Explain the role of temperature in metal forming operation.

4
b) Give in detail with reasons the beginning and finishing temperature of metal working operations. 6
c) What is warm working ? When is it applied ? Give examples.

6. a) Describe briefly the rapid solidification techniquies 6
b) Why is squeeze casting called liquid forgingerontinn
c) List three basic requirements for a good rolling lubricant.

4
7. a) List the various techniques of material removal processes other than mechanical energy.

4
b) Give a brief description of Electrical discharge machining (EDM).

4
c) What is thermomechanical processing ? Give an example of the process and its methodology. 4
d) What is super plastic forming ? Give its advantages. 2
8. Write short notes on any two of the following : 2×7
i) Production of seamless pipe
ii) Rheocasting
iii) High energy rate forming
iv) Advantages of powder metallurgy processes.

GROUP - C

Answer minimum 1 question of the following.
9. a) What are meant by cathode space and anode space in an electric arc ?
b) Select the proper power source for MMAW. Justify your selection with the V-I characteristics of the power source and electric welding arc.
c) Discuss TIG welding process with the help of necessary sketch(es). Write its advantages and applications.

$$
3+6+5
$$

10. a) Very thin foils are to be joined. Explain the process for this purpose. Give illustrative sketch.

b) What are rutile coating and cellulosic coating ? Explain them and write their uses.
c) What is distortion in welding ? Explain. $6+5+3$
11. a) Sketch and discuss the common defects in butt welds.
b) Write short notes on guided bend and controlled bend tests of welded joints.
c) Determine the change in welding current if the arc length changes from 4 mm to 5 mm for the power source with V-I characteristics

$$
V=30+\frac{I^{1.05}}{50}
$$

The arc length (l) and arc voltage (V) are related by the expression $V=20+4 l . \quad 5+5+4$
12. a) What is creep resistance resistant steel ? Give an idea about some well known composition of the same. Briefly explain about preheat and post weld treatmente of the creep resistance steels.
b) Give a classification of welding process for thermoplastic polymers.
c) Discuss about the welding of composites. $5+3+6$

