	Utech
Name:	
Roll No. :	To Annual O'S amenday and Explored
Invigilator's Signature :	

CS / ME / M.TECH / SEM-2 / PGMVD-201 / 2011 2011

ANALOG VLSI CIRCUITS AND SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any five from the rest.

- 1. Answer very briefly with proper reasoning with few sentences any *eight* of the following questions. Answer of this question should be in one place. $8 \times 2\frac{1}{2} = 20$
 - i) Under what condition a MOS transistor acts in saturation region?
 - ii) If E be an externally applied electric field to a bar of semiconductor, then what will be current flowing per unit area of the semiconductor?
 - iii) What is the channel resistance of a MOS transistor operating in linear region, with width W and length L?
 - iv) How is the saturation drain current expression of a MOS transistor modified to incorporate the effect of channel length modulation?

30469 (ME/M.TECH)

[Turn over

v)

- vi) What is the origin of thermal noise in a MOS transistor?
- vii) Prove that a drain-gate connected MOS transistor always operate in saturation region.
- viii) What are the advantages of MOSFET resistors?
- ix) What are the characteristics of a good MOS current sink?
- x) If Z_0 be the output impedance of any amplifier with open loop gain A and negative feedback be applied with feedback factor β , what will be the resultant output impedance considering the feedback?
- 2. Consider the following circuit:

What value of V_{IN} will give a current in the circuit of 100 μA if W_1/L_1 = 5 μm /1 μm and W_2/L_2 = 2 $\mu m/1$ μm ? For this value of V_{IN} , what is small signal voltage gain and output impedance ? Assume $K_{N'}$ = 110 $\mu A/V^2$ and V_{TN} = 0.7 V.

3. The following figure illustrates a source-degenerated current source. Assume $K' = 110 \, \mu\text{A/V}^2$ and $\lambda = 0.04 \, \text{V}^{-1}$. Find out the output resistance at the given current bias and the minimum output voltage required to keep the dence in saturation. Neglect body effect

10

- What do you mean by small signal? Derive the low frequency small signal model of a MOS transistor.
- 5. a) What are the characteristics of a good current reference circuit?
 - b) How can you characterize the power supply independence of a voltage reference circuit?
 - c) Show how a voltage reference circuit can be designed using MOS transistors.

CS / ME/M.TECH / SEM-2 / PGMVD-201 / 2011

		/ Utech	
6.	a)	What is the utility of a current mirror circuit?	2
	b)	Explain how a current mirror circuit can) be
		implemented using MOS transistor.	5
	c)	Discuss the effect of channel length modulation on the	he
		performances of a current mirror circuit.	3

- 7. a) Derive an expression for the unity current gain frequency of an NMOS transistor.
 - b) Comment on the significances of the above frequency parameter.

==========