	/ Unegn
Name:	A
Roll No.:	As Spanning (V Samplings 2nd Explaint)
Invigilator's Signature :	

CS/M. Tech (MT)/SEM-1/MTI-103/2011-12

2011

MACHINING SCIENCE AND MACHINE TOOLS

Full Marks: 70 *Time Allotted* : 3 Hours

Сс	andid	The figures in the margin indicate full marks. ates are required to give their answers in their own words as far as practicable.
		Answer any <i>five</i> of the following questions.
		$5 \times 14 = 70$
1.	a)	Write three attributes of cutting tool materials.
	b)	Name four common tool materials.
	c)	Explain the properties and application of HSS tools.
	d)	Explain the general relationship of tool wear versu
		cutting speed with a neat sketch.
2.	a)	Show the different parts of a single point cutting too
		with a neat sketch.
	b)	Explain the normal rake system (ISO System) of too
		nomenclature with a neat sketch.
	c)	Show the main elements of a standard drill with a nea
		sketch.
3.	a)	Name the main types of chips in machining process.
	b)	Distinguish between orthogonal cutting and obliqu

cutting with a neat sketch.

[Turn over 40689

CS/M. Tech (MT)/SEM-1/MTI-103/2011-12

- c) Explain the working principle of a three dimensional lathe tool dynamometer with a neat sketch.
- d) In an experiment on orthogonal cutting, a chip length of 85 mm was obtained from an uncut length of 202 mm while cutting with a tool of 20° rake angle using a depth of cut of 0.5 mm. Determine the shear plane angle and chip thickness.
- 4. a) Explain the working principle of tool-work piece thermocouple to determine the cutting tool temperature.

4

- b) Write five desirable properties of cutting fluid.
- c) Give the broad guidelines for selection of cutting fluid. 2
- d) Name two recommended cutting fluids for aluminium,
 carbon steels and high speed steels.
- 5. a) Write five costs associated with machining operations. 5
 - b) A bar is to be turned on a lathe with following parameters:

Length of bar L mm

Feed F mm/rev

speed Nrpm

Diameter of bar D mm.

Cost of operating machine per unit time C_u

Time for loading and unloading T_n

Cost per cutting edge of tool C_e

Tool life T minutes

Tool setting cost T_s

40689

			CS/M. Tech (MT)/SEM-1/MTI-103/2011-12
	Determine i)		T_0 the time of machining the job completely.
		ii)	R_p rate of production 1
		iii)	T_{opt} time for machining for optimum
		iv)	cutting. 1 V_{opt} optimum cutting speed considering
			minimum cost in turning 3
6.	a)	Classify the	e machine tool structures according to their
		functions.	3
	b)	Write basic	requirements of machine tool beds. 3
	c)	Derive the	condition for design of a machine tool bed
having length			gth l , breadth b and height h loaded by a
		concentrate	ed load p at the centre to the Young's
		modulus,	allowable normal stress and permissible
		deflection o	f bed are E , σ_a , δ_a respectively. 6
	d)	What is the	nature of loading in machine tool column?2
7.	a)	Find the sp	eed steps arranged in geometric progression
		for the follo	wing condition :
		$n_{\min} = 12 \text{rps}$	m, $n_{\text{max}} = 510 \text{rpm}$, $Z = 8$.
		carry at the	productivity analysis for the speed layout. 6
	b)		expression for range of spindle speeds for $V_{c { m max}}$ and $V_{c { m mix}}$ are the maximum and
			cutting speeds and $D_{ m max}$ and $D_{ m min}$ are the

maximum and minimum job diameters.

CS/M. Tech (MT)/SEM-1/MTI-103/2011-12

- c) Draw all the structural diagrams of two-stage gearbox with 16 numbers of steps.
- 8. a) Define automation.

2

- b) Derive the expression for h_t , index for degree of automation where t_m is 'mechanized' machine time, non-overlapped total and t_n is non-overlapped idle time for setting and handling working members and auxilliary devices.
- c) Differentiate between turret lathe and capstan lathe. 3
- d) Explain the working principle of template controlled copy milling machine.

40689 4