	Utech
Name :	<u>A</u>
Roll No.:	In Phase W Sample Ford Explored
Invigilator's Signature :	

CS / M. TECH (ME) / SEM-2 / MMT-203 / 2011

2011

ROBOTICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Question No. 1 in Group A is compulsory.

Answer any *five* questions from **Group B** and **Group C**, taking at least *two* from each Group.

GROUP - A

[Compulsory]

- 1. a) What is robot ? What are the basic components of a robotic system ? State the main function of each of the components.
 - b) What is work envelope of a robot? Sketch two views to indicate the work envelope of a
 - i) Cartesian robot
 - ii) Cylindrical robot
 - iii) Polar robot
 - iv) Anthropomorphic robot. (1+2+3)+(2+2)

30103 (M.TECH)

[Turn over

GROUP - B

- b) Explain undamped, underdamped, critically damped and over damped system from the characteristics equation.
- c) A mechanical joint design for a certain robot manipulator has the following differential equation which describes the position of the output link as a function of time:

$$\frac{3 \cdot 26 \, \mathrm{d}^2 y}{\mathrm{d}t^2} + \frac{17 \cdot 5 \, \mathrm{d}y}{\mathrm{d}t} - 44 \cdot 2y = x$$

where x equal to the forcing function and y represents the positions response of the joint.

- i) Write the characteristic equation for the differential equation above.
- ii) Determine the roots of the characteristic equation.
- iii) Best on the roots of the characteristic equation will the response be undamped, underdamped, critically damped or overdamped? 4 + 4 + 4
- 3. a) What are the functions of the sensors? What are the different types of sensors? Classify them with example.
 - b) What are meant by Range sensor and proximity sensor?
 - c) What is template matching? Describe briefly the method. 5+3+4

30103 (M.TECH)

- 4. a) What is robot manipulator kinematics? Explain about Forward and Reverse Transformations. Derive the equation for forward and reverse kinematics for the 3D configuration.
 - b) What is robot vision? What are the types of vision sensor used to take the image of an object?
 - c) What are the functions of vision processor? What are the steps necessary in the image processing? 4 + 4 + 4
- 5. a) What are lead through method and textual robot language method of robot programming? Differentiate between these two.
 - b) What are the different generations of robot language? Explain robot language structure with diagram.
 - c) A weldment is to be made. The weld trajectory is a continuous path arc welding along the paths $X_2 X_3$ with triangular weaving, $X_3 X_1$ with straight weld, $X_4 X_5$ with circular interpolation, $X_6 X_7$ with straight weld, $X_7^- X_8^- X_9$ with circular arc, $X_9^- X_{10}$ with straight line weld and $X_{10}^- X_{11}$ with five point weaving. The weld torch begins its movement from home position X_1 and departs to location X_{12} . Cater filling is done at the end of trapezoidal weaving. Write the VAL program for suitable arc welding.

GROUP - C

- 6. a) Why are SCARA robots preferred for assembly operations? Compare and contrast revolute robots and SCARA robots from the viewpoint of assembly operations.
 - b) What are the important characteristics to be added to the existing commercial robots to improve them for using in the factory of future? Suggest a good robot system plan.
 - c) What is teleported robot? How can it be used for maintenance of a reactor plant? 4 + 4 + 4

- 7. a) What are the possible robot applications in manufacturing industry? Classify such robots from the view point of drives and control.
 - b) What is robotic welding? Describe briefly the operations involved in robotic spot welding. What are the advantages of robotic welding over manual welding?
 - c) How robotic technology can help undersea welding. Explain. 5 + 4 + 3
- 8. a) It is desired to have the first joint of a six-axis robot to move from the initial, $\theta_i = 15^\circ$, to final positions, $\theta_f = 75^\circ$ using a cubit polynomial
 - i) determine the trajectory
 - ii) calculate joint angle at 2 sec
 - iii) comment on its end point velocities and acceleration.
 - b) What is Trajectory planning of robot arm manipulator? What are the different Trajectory planning techniques there? Explain and derive any one methods of trajectory planning.
 - c) What is point to point planning and what is continuous path generation? Explain with example. What is collision free path planning? 4 + 4 + 4
- 9. a) Define inverse and forward dynamics of a robot manipulator.
 - b) Derive the Euler-Lagrange (EL) equations of motions for a Revolute-Prismatic (RP) joined manipulator.
 - c) Find at least three commercial softwares which are capable of performing dynamics of a robot manipulator.
 - d) What are the apparent advantages and disadvantages of the Euler-Lagrange and Newton-Euler formulations.

3 + 4 + 2 + 3

=========