misime ofticistion UResh
 Name :
 Roll No.
 Invigilator's Signature :
 CS/M. Tech (ME)/SEM-2/MME-204/1/2013 2013
 ADVANCED METAL FORMING AND JOINING PROCESSES

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five of the following. $5 \times 14=70$

1. a) Distinguish between Coulomb's friction and constant friction factor (m).

4
b) Derive an expression for pressure distribution in case of plane strain forging of a plate :
i) With Coulomb's friction at the interface.
ii) With constant friction factor at the interface.

Also draw the pressure distribution curve. 10
2. a) Draw a typical true-stress strain curve for a ductile material and explain it. Compare this curve with engineering stress-strain curve and load extension
curve.

```
7
```


b) Draw the various ideal stress strain curve and corresponding dynamic model. Explain briefly. Correlate the true stress (σ) and true strain (ε) with Engineering stress(s) and Engineering strain(e).
3. a) How yield criteria is described by the following :
i) Vonmises
ii) tresca?
b) Derive an expression relating the internal fluid pressure, p for a thin tube of radius, r and thickness, t for fully plastic condition. Perform the calculations both for tresca and vonmises yield criteria. What will be the work done if the cylinder radius is increased by 20% ? Make calculation for plane strain and plane stress cases.
4. Sheet steel is reduced from 4.0 to 3.5 with 500 mm roll diameter having a coefficient of friction equals to 0.04. The mean flow stress in tension is 205 MPa. Neglect strain hardening and roll flattening.
a) Calculate the roll pressure at the entrance to the rolls, the neutral point, and the roll exist.
b) If $\mathrm{m}=0.4$, what is the roll pressure at the neutral point?
c) If 35 MPa front tension is applied in 4 (a), what is the roll pressure at the neutral point?
5. a) Prove Hencky's theorem for sliplines.
b) Derive Hencky's equation for sliplines.
c) Present the slipline field and hodography for Extrusion through a perfectly smooth wedge-shaped die of semi angle, α of reduction, $r=2 \sin \alpha /(1+2 \sin \alpha)$.
6. a) Explain with neat sketch the principle of ultrasonic beam welding.7
b) Discuss the advantage and disadvantage of ultrasonic beam welding along with the application.
7. a) Why is it necessary to provide clearance between punch and die in a shearing operation? Give reason.
b) Explain the function of the following components with reference to sheet metal dies :
(i) Pilots
(ii) Back gauge
(iii) Dowel pin
(iv) Die stop.
c) Distinguish between bending and drawing in sheetmetal operations.
d) A sheet which has already been bent in a cold state offers great resistance to further bending. Explain the reason.

CS/M. Tech (ME)/SEM-2/MME-204/1/2013
8. Write short notes on any four of the following :

a) Welding of stainless steel
b) High energy rate forming process
c) Hysteresis effect in plastic working
d) Laser beam welding
e) Formability of sheet metal
f) Yield locus.

