|                             | 090                               |
|-----------------------------|-----------------------------------|
|                             | Uledh                             |
| <i>Name</i> :               | \$                                |
| Roll No.:                   | A Annual Of Complete and Confined |
| Invigilator's Signature : . |                                   |
|                             | CS/M.TECH(ME)/SEM-2/ME-204/2013   |

## 2013

## ADVANCED CONTROL SYSTEM

 $\it Time \ Allotted: 3 \ Hours \qquad \it Full \ Marks: 70$ 

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions.  $5 \times 14 = 70$ 

- 1. a) State and prove the final value theorem of *z*-transform.
  - 5
  - b) Obtain the z-transform of  $\frac{1}{s^2(s+2)}$ .
  - c) Find the inverse z-transform of  $\frac{z}{(z-1)^3}$ .
- 2. a) Obtain the transfer function of zero order hold and discuss its frequency response characteristics.

30483 (M.TECH)

[ Turn over

## CS/M.TECH(ME)/SEM-2/ME-204/2013

b) Solve the difference equation  $x(k+2)-1\cdot 3x(k+1)+0\cdot 4x(k)=u(k)$ 

using z-transform when x(k) and u(k) are given by

$$x(k) \begin{cases} = 0 \text{ for } k = 0,1 \\ = 0 \text{ for } k < 0 \end{cases}$$
 and

$$u(k)$$
 = 1 for  $k = 0, 1, 2, 3, \dots$  etc.  
= 0 for  $k < 0$ 

3. In the following figure, the controller  $G_D(z)$  is designed for the system to have a pair of dominant closed loop poles. Find the damping ratio, settling time and static velocity error of the system.



Where, 
$$G_D(z) = 12 \cdot 67 \left( \frac{z - 0 \cdot 6703}{z - 0 \cdot 2543} \right)$$

and 
$$G_p(s) = \frac{1}{s(s+2)}$$
.

4. a) Explain the mapping between s-plane and z-plane.

7



b) Discuss about controllability and observability of the system

$$\underline{x}(k+1) = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \underline{x}(k) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(k)$$

$$y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \underline{x}(k)$$
7

5. a) Find the range of values of *K* for which the system given below is stable.



7

b) Given a system

$$\underline{x}(k+1) = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix} \underline{x}(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

$$y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(k)$$

$$u(k) = r(k) - [k_1 k_2] \underline{x}(k)$$

Find the state feedback gain matrix  $[k_1 k_2]$  so that the closed loop poles of the system are placed at  $0.5(1\pm j)$ .

7

## CS/M.TECH(ME)/SEM-2/ME-204/2013



$$\underline{\dot{x}}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \underline{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \underline{x}(t)$$

where u(t) is a unit step function occurring at t = 0. 8

- b) Find the pulse-transfer function matrix for a linear time invariant system and show that it is invariant under similarity transformation.
- 7. a) Obtain pulse transfer function of PID controller in positional form.
  - b) Calculate the describing function for an ideal relay. 6

\_\_\_\_\_