
 Name :
 Roll No. :
 \qquad Nom
 Invigilator's Signature :
 \qquad
 CS/M.TECH (ME)/SEM-1/M-1101/2009-10 2009
 ADVANCED OPTIMIZATION STATISTICAL METHODS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

1. Answer any five questions:
a) What are multiple and partial correlations (3 variables) ?
b) Write short note on Geometric Programming tecnique.
c) Define Spearman rank correlation and correlation coefficient.
d) Write short note on Stomachic programming.
e) This line of regression of y on x on y are respectively $y=x+5$ and $16 x=9 y-94$. Find the variance of x if the variance of y is 16 . Also find the coveriance of x and y.
f) If x_{1}, x_{2}, x_{3} are three variates measured from their means with $N=10$

$\sum x_{1}^{2}=90, \quad \sum x_{2}^{2}=160, \quad \sum x_{3}^{2}=40$, $\sum x_{1} x_{2}=60, \quad \sum x_{2} x_{3}=60, \quad \sum x_{3} x_{1}=40$.

Calculate the partial correlation coefficient $r_{31.2}$ and multiple correlations coefficient $R_{1.23}$
g) Define the test for goodness of fit using Chi-square (χ^{2}) distribution.

GROUP - B

Answer any three questions. $3 \times 15=45$
2. a) Determine the optimal solution for the following NLPP and check it maximizes or minimizes the objective function :

$$
\begin{gathered}
\text { Optimize } \quad z=2 x_{1}-x_{1}^{2}+2 x_{2} \\
\text { subject to } \quad 2 x_{1}+3 x_{2} \leq 6 \\
\\
2 x_{1}+x_{2} \leq 4 \\
\\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

b) If the equations of two Regression lines obtained in a correlation analysis are $3 x+12 y-19=0$ and
$9 x+3 y=46$. Determine which one is regression equation of y on x and which one is the regression equation of x on y. Find the mean of x and y, Correlation coefficient and ratio of Standard Deviation of x and y.
3. a) Solve the following NLPP by Lagrange Multiphers method

Minimize $z=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
subject to $4 x_{1}+2 x_{2}^{2}+2 x_{3}=14$

$$
x_{1}, x_{2}, x_{3} \geq 0 .
$$

b) The following figures give the number of defectives in 20 samples each containing 2000 items :

423, 430, 216, 341, 223, 322, 280, 306, 337, 305, 356, 402, 216, 264, 126, 409, 193, 326, 280, 390.

Calculate the values for central line and the control limits for p chart (fraction-defective chart). $8+7$
4. a) In a sample of 8 observations, the sum of squared deviations of items from the mean was $94 \cdot 5$. In another sample of 10 observations the value was found to be $101 \cdot 7$. Test whether the difference is significant at 5% level. (You are given that 5% level, critical value of F for $v_{1}=7$ and $v_{2}=9$ degrees of freedom is 3.29 and for $v_{1}=8$ and $v_{2}=10$ d.f. its value is 3.07 .
b) Find the optimum integer solution to the following integer programming problem :

Maximize $z=x_{1}+x_{2}$
Subject to the constraints $3 x_{1}+2 x_{2} \leq 5$

$$
x_{2} \leq 2
$$

Where x_{1}, x_{2} are integer's ≥ 0.

$$
\begin{array}{ll}
\text { subject to } & y_{1}+y_{2}+\ldots+y_{3}=c(\neq 0) \\
& y_{1} \geq 0, j=1,2, \ldots, n
\end{array}
$$

b) Solve the following NLPP using Kuhn-Tucker condition :

$$
\begin{aligned}
\text { Maximize } z= & 2 x_{1}^{2}-7 x_{2}^{2}+12 x_{1} x_{2} \\
\text { subject to } & 2 x_{1}+5 x_{2} \leq 98 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

