

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

$$
\text { Answer any five questions. } \quad 5 \times 14=70
$$

1. Let $f(x)$ be a periodic function with period $2 \pi(-\pi<x<\pi)$. Let $f(x)$ be expressed as

$$
f(x)=\frac{a_{0}}{2}+\dot{\sum}_{n=1}(a n \cos n x+b n \sin n x) .
$$

Then prove that

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \mathrm{d} x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{~d} x, n=1,2, \ldots . . \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x \mathrm{~d} x, n=1,2, \ldots .
\end{aligned}
$$

a) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+$ \qquad $=\frac{\pi^{2}}{6}$
b) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}$ \qquad $=\frac{\pi^{2}}{12}$
3. Prove that $f(x)=x$ can be expanded in a series of cosines in $0<x<\pi$, as
$x=\frac{\pi}{2}-\frac{4}{\pi}\left[\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\ldots ..\right]$
Hence deduce that
$\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots$.
4. Find Fourier transform of
$f(x)=1,|x| \leq a$
$=0$, otherwise,
where a is a positive real number. Hence deduce that

$$
\int \frac{\sin t}{t} \mathrm{~d} t=\frac{\pi}{2}
$$

0
5. Find the Fourier of the function $f(x)$ defined by

$$
\begin{aligned}
f(x) & =1-x^{2},|x|<1 \\
& =0 \quad,|x| \geq 1 .
\end{aligned}
$$

Hence prove that

$$
\int_{0} \frac{\sin s-s \cos s}{s^{3}} \cos \left(\frac{s}{2}\right) \mathrm{d} s=\frac{3 \pi}{16}
$$

a) $\frac{1-\cos 2 t}{t}$
b) $\frac{e^{-3 t} \sin 2 t}{t}$.
7. a) Define singular point of a differential equation. Solve in series the equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-y=0$.
b) Show that $\frac{\mathrm{d}}{\mathrm{d} x}\left\{x^{n} J_{n}(x)\right\}=x^{n}=J_{n-1}(x)$.
8. a) Express $x^{3}-x^{2}+5 x-2$ in terms of Legendre polynomials.
b) Establish D'Alembert's general solution of the wave equation in the form

$$
u=f_{1}(x+c t)+f_{2}(x-c t) .
$$

