

Name:
Roll No. : \qquad
Invigilator's Signature : \qquad
CS/ M.Tech(ME-O)/ SEM-1/ MM(ME)-101/ 2012-13 2012
ADVANCED ENGINEERING MATHEMATICS

Time Allotted: 3 Hours

Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Attempt any five questions.
$5 \times 14=70$

1. a) Given that the mode of the following frequency distribution of 70 students is 58.75 . Find the missing frequencies f_{1} and f_{2}.

Class interval	$52-55$	$55-58$	$58-61$	$61-64$
Frequency	15	f_{1}	25	f_{2}

b) Determine the constants a and b by the method of least squares such that $y=a e^{b x}$ fits the following data :

\boldsymbol{x}	2	4	6	8	10
\boldsymbol{y}	4.077	11.084	$30 \cdot 128$	$81 \cdot 897$	$222 \cdot 62$

$$
7+7
$$

2. a) If r be the correlation coefficient for a set of bivariate data, prove that $-1 \leq r \leq 1$. Discuss the cases $r= \pm 1$.
b) For two variables x and y, the two regression lines are $x+4 y+3=0$ and $4 x+9 y+5=0$. Identify which one is of y on x. Find means of x and y. Find the correlation coefficient between x and y. Estimate the value of x when $y=1.5$.
3. a) Obtain an estimate of error in polynomial interpolation.
b) Using Lagrange's interpolation formula, find the form of the function $y(x)$ from the following table :

\boldsymbol{x}	0	1	3	4
\boldsymbol{y}	-12	0	12	24

$$
7+7
$$

4. a) Solve the following System by Gauss-Seidel method corrected up to two decimal places :

$$
\begin{aligned}
& 28 x+4 y-z=32 \\
& x+3 y+10 z=24 \\
& 2 x+17 y+4 z=35
\end{aligned}
$$

b) Determine the largest eigenvalue and the corresponding eigenvector of the matrix
$\left[\begin{array}{ccc}4 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 1 & 4\end{array}\right]$ correct to two decimal places using power method.
5. a) Discuss how the nodes $\left(x_{k}\right)$ and the weights $\left(\lambda_{k}\right)$ are determined in Gauss-Legendre integration formula

$$
\int_{-1}^{1} f(x) \mathrm{d} x=\sum_{0}^{n} \lambda_{k} f\left(x_{k}\right)
$$

b) Solve the following system of equations, correct to 2 decimal places, by Newtow-Raphson method with (1,2) as initial approximation :

$$
x+y=3 x^{2}, y^{3}-2=4 x^{3}
$$

6. Solve the BVP :
$y^{\prime \prime}+2 y=x, 0<x<1$

$y(0)=0, y(1)=0$.
by Rayleigh-Ritz method using the approximating function $w(x)=x(1-x)\left(a_{1}+a_{2} x\right)$.
7. a) State Fourier intergal theorem.
b) Find the Fourier sine transform of $f(x)=\frac{1}{x e^{x}}$
c) A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the initial temperature is

$$
\begin{aligned}
u(x, 0) & =x, & 0 & \leq x \leq 50 \\
& =100-x, & 50 & \leq x \leq 100 .
\end{aligned}
$$

Find the temperature $u(x, t)$ at any time t by the method of separation of variables.
$2+5+7$
8. a) A string is stretched and fixed between two points $x=0$ and $x=L$. Motion is initiated by displacing the string in the form

$$
u=a \sin \frac{\pi x}{L}
$$

and released from rest at $t=0$. Find the displacement of any point on the string at any time t by using integral transform technique.
b) Find the steady state temperature distribution in a large rectangular plate, the flat surfaces of which are insulated, when the temperature is prescribed by $f(x)$ along one edge of the plate and tends to zero along each of the other edges.

