	Utech
<i>Name</i> :	
Roll No.:	To Alexand LY Executing 2nd Explored
Inviailator's Sianature :	

CS/M.TECH (MTT & MCP)/SEM-3/CS-312/2010-11 2010-11

NUMERICAL METHODS & PROGRAMMING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.

1. a) Derive
$$f[x_0, x_1, \dots, x_n] = \frac{1}{n! n^n} \Delta^n f_0$$

and $f[x_0, x_1, \dots, x_n] = \frac{1}{n! n^n} \Box^n f_n$

where Δ , \square forward and backward difference operator. x_0 , x_1 , x_n be equally spaced points *i.e.*

$$x_i = x_o + ih$$
 where $i = 0, 1, \dots, n$.

b) Calculate the differences and obtain the forward difference polynomial from the following data :

x :	0.1	0.2	0.3	0.4	0.5
f(x):	1.40	1.56	1.76	2.00	2.28

Interpolate at x = 0.25 and x = 0.35.

5

40250 [Turn over

- 2. a) Explain the principle involved in Runge-Kutta 4th order method.5
 - b) Solve the initial value problem:

$$u' = -2tu^2 u(0) = 1$$

with h=0.2 on the interval [0, 0.4]. Use the fourth order classical Runge-Kutta method. Compare with the exact solution.

- c) Write programme code to compute f(t, u) as function subprogram, where $f(t, u) = -2tu^2$ as in above.
- 3. a) Calculate the value of integral $\int_{0}^{2} \frac{dx}{5+3x}$ using $\frac{3}{8}$ th

Simpson's rule.

b) Write a program to evaluate the above integral of f(x)

6

using Simpson's rule of intigration based on $2\,n$

sub-intervals or 2n + 1 nodel points.

The values of a, b and n are to be read and the integrand is written as a function sub-program.

40250 2

4

b) Solve the system of equation

$$2x_1 - x_2 + 0x_3 = 7$$

 $-x_1 + 2x_2 - x_3 = 1$

$$0x_1 - x_2 + 2x_3 = 1$$

Using the Gauss-Seidel method.

Take the initial approximation as $[x]^{(0)} = 0$ and perform three iteration.

5. a) Apply Netwon-Raphson's method to determine a root of the equation

$$f(x) = \cos x - xe^x = 0$$

such that $|f(x^*)| < 10^{-8}$, where x^* is the approximation to the root. Take the initial approximation as $x_0 = 1$.

- b) Find the rate of convergence of the Newton-Raphson method.
- c) Write the algorithm to solve the equation mentioned above.
- 6. a) Define floating and fixed point representation of real number.
 - b) Define relative error and absolute error, round-of-error.

4

c) Define significant digits.

2

[Turn over

d) What is illconditioned system of equation?

40250 3

$$\left(\frac{\partial f}{\partial x} \right)_{(x_i, y_i)} ; \left(\frac{\partial f}{\partial y} \right)_{(x_i, y_i)} ;$$

$$\left(\frac{\partial^2 f}{\partial x^2} \right)_{(x_i, y_i)} ; \left(\frac{\partial^2 f}{\partial y^2} \right)_{(x_i, y_i)} .$$

b) Find the Jacobian matrix for the system of equations

4

$$f_1(x, y) = x^2 + y^2 - x = 0$$

 $f_2(x, y) = x^2 - y^2 - y = 0$

at the point (1, 1) using the methods with h=k=1, where $x_i=x_0+ih,\ y_j=y_0+jk,\ i,j=1,2\dots$

10

4

40250