

Name:
Roll No. : \qquad
Invigilator's Signature : \qquad
CS/M.TECH (MTT \& MCP)/SEM-3/CS-312/2010-11 2010-11

NUMERICAL METHODS \& PROGRAMMING

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.

1. a) Derive $f\left[x_{\theta}, x_{1} \ldots . . x_{n}\right]=\frac{1}{n!n^{n}} \Delta^{n} f_{0}$ and $f\left[x_{0}, x_{1} \ldots \ldots x_{n}\right]=\frac{1}{n!n^{n}}{ }^{n} f_{n}$
where Δ, forward and backward difference operator. $x_{0}, x_{1} \ldots \ldots, x_{n}$ be equally spaced points i.e.
$x_{i}=x_{o}+i h$ where $i=0,1, \ldots, n$.
$f\left[x_{0}, x_{1}, \ldots, x_{n}\right] \varnothing n^{\text {th }}$ Newton divided differences. 4
b) Calculate the differences and obtain the forward difference polynomial from the following data :

$\boldsymbol{x}:$	$0 \cdot 1$	0.2	0.3	0.4	0.5
$\boldsymbol{f}(\boldsymbol{x}):$	1.40	1.56	1.76	$2 \cdot 00$	2.28

Interpolate at $x=0.25$ and $x=0.35$.
5

CS/M.TECH (MTT \& MCP)/SEM-3/CS-312/2010-11
c) Write programme code to read the above mentioned data (5 points) i.e. number of points, input the abscissas, and printing the same to write file, input of ordinates and printing the same.
2. a) Explain the principle involved in Runge-Kutta 4th order method.
b) Solve the initial value problem :

$$
u^{\prime}=-2 t u^{2} u(0)=1
$$

with $h=0.2$ on the interval [$0,0.4$]. Use the fourth order classical Runge-Kutta method. Compare with the exact solution.
c) Write programme code to compute $f(t, u)$ as function subprogram, where $f(t, u)=-2 t u^{2}$ as in above. 3
3. a) Calculate the value of integral $\int^{2} \frac{d x}{5+3 x}$ using $\frac{3}{8}$ th 0

Simpson's rule.
b) Write a program to evaluate the above integral of $f(x)$ using Simpson's rule of intigration based on $2 n$ sub-intervals or $2 n+1$ nodel points.

The values of a, b and n are to be read and the integrand is written as a function sub-program.
4. a) Describe the Gauss-Seidel iteration method
b) Solve the system of equation

$$
\begin{aligned}
& 2 x_{1}-x_{2}+0 x_{3}=7 \\
& -x_{1}+2 x_{2}-x_{3}=1 \\
& 0 x_{1}-x_{2}+2 x_{3}=1
\end{aligned}
$$

Using the Gauss-Seidel method.
Take the initial approximation as $[x]^{(0)}=0$ and perform three iteration. 10
5. a) Apply Netwon-Raphson's method to determine a root of the equation

$$
f(x)=\cos x-x e^{x}=0
$$

such that $\left|f\left(x^{*}\right)\right|<10^{-8}$, where x^{*} is the approximation to the root. Take the initial approximation as $x_{0}=1$.6
b) Find the rate of convergence of the Newton-Raphson method.

4
c) Write the algorithm to solve the equation mentioned above.
6. a) Define floating and fixed point representation of real number.
b) Define relative error and absolute error, round-of-error.
c) Define significant digits. 2
d) What is illconditioned system of equation?

CS/M.TECH (MTT \& MCP)/SEM-3/CS-312/2010-11
7. a) Describe the method to express differentiation :

$$
\begin{aligned}
& (\partial f / \partial x)_{\left(x_{i}, y_{i}\right)} ;(\partial f / \partial y)_{\left(x_{i}, y_{i}\right)} ; \\
& \left(\partial^{2} f / \partial x^{2}\right)_{\left(x_{i}, y_{i}\right)} ;\left(\partial^{2} f / \partial y^{2}\right)_{\left(x_{i}, y_{i}\right)} .
\end{aligned}
$$

b) Find the Jacobian matrix for the system of equations

$$
\begin{aligned}
& f_{1}(x, y)=x^{2}+y^{2}-x=0 \\
& f_{2}(x, y)=x^{2}-y^{2}-y=0
\end{aligned}
$$

at the point (1,1) using the methods with $h=k=1$, where $x_{i}=x_{0}+i h, y_{j}=y_{0}+j k, i, j=1,2 \ldots$.

