	Utech
Name:	
Roll No.:	A Grant of Employ and Explored
Invigilator's Signature :	

CS/M.TECH(ECE-COMM)/SEM-2/MCE-201/2012 2012

PHOTONICS AND OPTICAL COMMUNICATION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any seven of the following: $7 \times 2 = 14$
 - i) Most suitable fibre for WDM applications is
 - a) dispersion optimized
 - b) dispersion shifted
 - c) dispersion flattened
 - d) none of these.
 - ii) The cut-off wavelength of a step-index single-mode fibre with a core diameter of 8.2 μm and NA = 0.12, is
 - a) 0.850 μm
- b) 1.285 μm
- c) 1.320 µm
- d) $1.550 \mu m$.

30287(M.TECH)

[Turn over

CS/M.TECH(ECE-COMM)/SEM-2/MCE-201/20

- iii) Single mode fibre has
 - a) less modal noise than multi-mode fibre
 - b) larger value of *V*-number than multi-mode fibre
 - c) leaky mode due to radiation loss
 - d) larger value of output intensity than multimode.
- iv) In comparison to LED, Laser has
 - a) no tuning arrangements
 - b) higher emission efficiency
 - c) narrow spectral width
 - d) provision for confinement.
- v) Which of the following semiconductors can be used to fabricate LED?
 - a) Si

b) Ge

c) GaAs

- d) None of these.
- vi) Which of the following has more sensitivity?
 - a) *p-i-n* diode
- b) APD
- c) neither (a) nor (b)
- d) either (a) or (b).
- vii) Photodetector is a
 - a) triangular device
- b) square law device
- c) linear device
- d) none of these.
- viii) The V no. of an optical fibre is 50. The no. of modes in the fibre is approximately
 - a) 50

b) 1000

c) 1250

- d) 2500.
- ix) Intermodal dispersion is zero for
 - a) single mode fibre
 - b) multimode step index fibre
 - c) multimode graded index fibre
 - d) plastic fibre.

CS/M.TECH(ECE-COMM)/SEM-2/MCE

GROUP - B

(Long Answer Type Questions)

 \times 14 = 56

- 2. a) What are the key requirements for analyzing a link? 2
 - b) What are the advantages of Laser diode than LED as optical source?
 - c) The refractive index of the core of an optical fibre is 1.55 and that of clad is 1.51. The light is launched into the fibre from air. Determine
 - i) numerical aperture
 - ii) acceptance angle and
 - iii) multiple time dispersion.

6

- d) A multimode fibre has a core refractive index of 1.5. The relative refractive index difference is 3 per cent. The operating wavelength is 0.80 μm . Calculate the critical radius of bending.
- 3. a) Discuss, with neat diagrams, the methods of obtaining the following:
 - i) Dispersion shifted single-mode fibres
 - ii) Dispersion flattened single-mode fibres. 3 + 3
 - b) In a step-index single-mode fibre, core refractive index = 1.48 and Δ = 1.0%. If the material dispersion at $1.55~\mu m$ is 7 ps nm⁻¹ km⁻¹, estimate the required core radius for achieving zero total dispersion at this wavelength.
 - c) What is the need for AGC circuit in an optical receiver system?
- 4. a) Deduce an expression for internal quantum efficiency of an LED.
 - b) What do you mean by responsivity of a photodetector? Deduce an expression for responsivity of a photodetector. 2+3
 - c) Explain the operation of Nd doped fibre laser.

5

CS/M.TECH(ECE-COMM)/SEM-2/MCE-201/20

- 5. a) What are the different kinds of absorption losses take place in optical fibre? Explain in brief. 6
 - b) Give a comparison between Stimulated Raman Scattering and Stimulated Brillouin Scattering. 4
 - c) The average optical power launched into a 10 km length of fibre is 100 μW and the average output power is 2.5 μW . Calculate the signal attenuation per km of the fibre and the total signal attenuation for the entire length.
- 6. a) Explain in brief the different kinds of three and four port optical coupler. 4
 - b) Explain in brief Link Power Budget and Rise Time Budget. 3 + 3
 - c) The rms pulse broadening within a fibre system is 0.6 ns/km. Calculate the dispersion equalization penalty over an unrepeated length of 8 km at a bit rate of 25 Mbits/sec. Consider with mode coupling and without mode coupling both.
- 7. a) Distinguish between WDM and DWDM systems. Draw the block diagram and explain the working principle of a WDM system. 2 + 5
 - b) A 2×2 directional coupler uses two identical lossless single-mode fibres. Establish the theory behind the operation of such a coupler. Determine the interaction length so that the input power P_0 is divided equally at two-output ports.
- 8. Write short notes on any *two* of the following: 7 + 7
 - a) Polarization Maintained Single Mode Fibre
 - b) Photonic Packet Switching
 - c) Erbium-doped Fibre Amplifiers
 - d) Coherent detection principle
 - e) Fibre Bragg Grating.

4