	<u>Utech</u>
Name:	A
Roll No. :	An Albania (M. Charagolinger Stand Expellent)
Inviailator's Sianature :	

CS/M. TECH (ECE-COMM)/SEM-2/MCE-204C/2012

2012

INTEGRABLE CIRCUITS & DESIGN

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

- 1. Answer any *five* from the following questions : $5 \times 2 = 10$
 - a) What are four generations of integrated circuits?
 - b) Define the static resistance and the dynamic resistance of p-n diode.
 - c) Implement an XOR gate using CMOS transmission gate.
 - d) What is precharge-evaluate logic?
 - e) What are the main constructional differences between an MOSFET and a BJT?
 - f) What is the mass action law for the carrier concentrations in a semiconductor ? What is its significance ?
 - g) What is the advantage of differential operation over single-ended signaling?

30249 (M. Tech)

[Turn over

GROUP - B

Answer any *five* of the following questions. $5 \times 12 = 60$

- a) What do you mean by channel length modulation ? How is drain current related with channel length modulation coefficient ?
 - b) The reverse saturation current at 300K of a p-n junction Ge diode is 5μ A. Find the voltage to be applied across the junction to obtain a forward current of 50mA. Given non-ideality factor $\eta = 1$, Boltzmann's constant $k = 1.38 \times 10^{-23}$ J/K, electron charge $q = 1.6 \times 10^{-9}$ C.

4

- c) Consider an *n*-channel MOSFET with t_{ox} = 20nm, μ_n = 650 cm²/V-s, V_{th} = 0.8V and W/L = 10. Find the drain current in the following cases :
 - i) $V_{GS} = 5 \text{ V} \text{ and } V_{DS} = 1 \text{ V}$

ii)
$$V_{GS} = 2 V$$
 and $V_{DS} = 1.2V$

- 3. a) Draw the circuit diagram of CMOS inverter and explain its operation using VTC curve.
 - b) Consider a resistive load inverter circuit with V_{DD} = 5 V, $K_{n'}$ = $20\mu\,A/V^2$, V_{TO} = 0.8V, RL = $200~k\Omega$ and W/L = 2. Calculate the critical voltages (V_{IL} , V_{OL} , V_{IH} , V_{OH}) on the VTC and find the noise margins of the circuit.

30249 (M. Tech)

CS/M. TECH (ECE-COMM)/SEM-2/MCE-204C/2012

c) Derive the expression for inverter threshold voltage for CMOS inverter:

$$V_{th\,INV} = \frac{VTon + \sqrt{\frac{k_p}{k_n}} (V_{DD} + VT_{OP})}{\left(1 + \sqrt{\frac{k_p}{k_n}}\right)}$$

- 4. a) What do you mean by "Mosfet in weak inversion"? Write down the drain current equation for MOSFET in weak inversion.
 - b) Design a 4:1 multiplexer circuit using TG switches. 4
 - c) Why dynamic logic can't be cascaded directly? Implement the Boolean function F = (ABC + DE)' using dynamic CMOS logic. 2 + 3
- 5. a) A CMOS inverter has a power supply voltage $V_{\rm DD}$ = 5 V. Using average current method calculate the fall time i fall. $V_{\rm out}$ = V90% = 4.5V and $V_{\rm out}$ = V10% = 5V. The output load capacitance is 1pF. The nMOS transistor parameter is given as : μ nCox = 20μ A/V², (W/L) n = 10, VT, n = 1.0V.
 - b) Design a static CMOS logic to implement the Boolean function $F = AB + AB^{\prime} C + A^{\prime} C^{\prime}$.
 - c) Draw the layout and schematic diagram of 2-input static CMOS NOR gate and identity the corresponding components in the two drawings.

CS/M. TECH (ECE-COMM)/SEM-2/MCE-204C/2012

Switched capacitor circuits.

6.	a)	What are the problems associated with clock skew?	3
	b)	Design a NOR2 gate based CMOS SR latch and explain) n
		its operation.	4
	c)	Design a Full adder circuit using CMOS logic.	5
7.	a)	Draw the small signal equivalent circuit model of	ıf
		MOSFET and find output resistance.	3
	b)	With circuit diagram, explain the operation of MOS	S
		current mirror.	4
	c)	Derive the small signal voltage gain for common gat	e
		amplifier and compare it with common source stag	e
		amplifier.	5
8.	Wri	te short notes on any <i>two</i> of the following: 6 +	6
	a)	Cascoding stage	
	b)	CMOS differential amplifier	
	c)	Domino Logic	

d)