

Time Allotted: 3 Hours

Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Answer all the questions.

1. Explain the error detecting capability of Linear Block Code.
2. (7, 4) linear cyclic code has a generator polynomial $g(x)=1+x+x^{3}$. Draw the syndrome circuit and find out the syndrome showing all the contents of the registers in all the required shifts for $r=0010110$. $3+3$
3. Explain why an error correcting code must at least satisfy Hamming Bound. What is Hamming Code ? $3+1$

GROUP - B

Answer any four questions. $\quad 4 \times 14=56$
4. Write short notes on any two of the following :
a) Advantages and disadvantages of convolution code
b) Standard array
c) Dual code
d) Shortened cyclic code.
5. Find the general expression for the probability of earor in a binary symmetric Gaussian channel.

6. The parity check bits of a (8,4) block code are generated by

$$
\begin{aligned}
& C_{5}=d_{1} \oplus d_{2} \oplus d_{4}, \quad C_{6}=d_{1} \oplus d_{2} \oplus d_{3} \\
& C_{7}=d_{1} \oplus d_{3} \oplus d_{4}, \quad C_{8}=d_{2} \oplus d_{3} \oplus d_{4}
\end{aligned}
$$

a) Find the generator matrix and the parity check matrix for this code.
b) Find the minimum weight of this code.
c) Find the error detecting and the error correcting capability of this code.
$6+4+4$
7. a) Construct a decoding table for the (7,4) cyclic code for the error pattern $e=1000000, e=0100000$, $e=0001000$. Assume $g(x)=x^{3}+x^{2}+1$. Determine the data vector corresponding to the received vector $r=1101101$. $6+3$
b) Consider $g(x)=x^{3}+x+1$. Design an encoding circuit for (7,4) cyclic code and determine the output for the input data 1011.
8. a) The polynomial $P(x)=1+x+x^{4}$ is a primitive polynomial over GF (2). Find the elements of GF (2^{4}) and show their polynomial representation.
b) Determine the generator polynomial of a single and double error correcting BCH code whose block length is 15 .

CS/M.Tech(ECE-COMM.)/SEM-2/MCE-202/2012

9. The generator polynomial for a cyclic code with block length 7 is $g(x)=1+x+x^{3}$.
a) Find the parity check matrix H.
b) How many errors can this code detect?
c) How many errors can this code correct ?
d) Write the generator matrix in the systematic form.
e) Find the generator polynomial of the dual code.

$$
5+2+2+3+2
$$

