
 uresh
 Name :
 \qquad
 Roll No. :

 Invigilator's Signature :
 CS/M.TECH (MC-VLSI)/SEM-1/PGMVD-101/2011-12

 2011

 2011
 ADVANCED ENGINEERING MATHEMATICS

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

1. Answer any five questions :
a) What do you mean by 'complement of a graph'?
b) What is the number of vertices in a 4-dimensional hypercube ? Draw a hypercube of dimension 3 .
c) Define a planar graph.
d) Draw the dual of the following graph :

e) Draw a digraph whose adjacency matrix is

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] .
$$

f) Find the laplace transform of $f(\mathrm{t})=\cos \omega \mathrm{t}$.

g) Determine the inverse Laplace transform of $F(S)=\frac{5}{3 S-1}$
h) For a function $f(x)$ of period 2L, write down the expression for the Fourier coefficient b_{n}.
i) Write down the Fourier transform of $f^{\prime}(x)$ in terms of the Fourier transform of $f(x)$ and ω.

GROUP - B

Answer any six questions. $\quad 6 \times 10=60$
2. a) What do you mean by a clique ? Draw a connected graph with 7 vertices and 9 edges which contains a clique of size 4 . $2+3$
b) Prove that a tree with two or more vertices has at least two pendant vertices.
3. a) Prove that any tree with two or more vertices is 2-chromatic.
b) Define complete matching and maximal matching. State Hall's theorem in connection with matching.
4. State and prove Euler's theorem for planar graphs.

5. Consider the following planar graphs G_{1} and G_{2} which are isomorphic :

a) Draw the dual $\mathrm{G}^{\prime}{ }_{1}$ of G_{1} and the dual $\mathrm{G}^{\prime \prime}{ }_{1}$ of $\mathrm{G}^{\prime}{ }_{1}$. Examine whether G_{1} and $\mathrm{G}^{\prime \prime}{ }_{1}$ are isomorphic.

6
b) Draw the dual $\mathrm{G}^{\prime}{ }_{2}$ of G_{2}. Examine whether $\mathrm{G}^{\prime}{ }_{1}$ and $\mathrm{G}^{\prime}{ }_{2}$ are isomorphie.
6. a) Find the chromatic polynomial of the following graph :

b) If there are 4 colours, in how many ways can the vertices of the graph in (a) be properly coloured ? 2
7. Using Laplace transform, solve the initial value problem,
$y^{\prime \prime}+4 y=f(t), y(0)=y^{\prime}(0)=0$
in which $f(t)=\left\{\begin{array}{c}0 \text { for } t<3 \\ t \text { for } t \geq 3\end{array}\right.$.
8. a) Using convolution property, solve the following integral equation :
$y(t)=t+\int_{0}^{t} y(\tau) \sin (t-\tau) d \tau$.
b) Determine the Laplace transform of $f(t)=\frac{t}{2 \beta} \sin \beta t$.
9. a) Find the Fourier transform of $f(x)=e^{-a x^{2}}$ where $a>0$.
b) Find the Z transform of $(\cos \theta+i \sin \theta)^{n}$.
10. a) Find the half-range Fourier sine series for the function $f(x)=x$ in the range $0 \leq x \leq 2$. Sketch the function within and outside of the given range.
b) Starting from the trigonometrie series
$f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$,
establish the representation of the complex Fourier series, viz. $f(x)=\sum_{n=-\infty}^{\infty} C_{n} e^{i n x}$

