	/ Unean
Name :	A
Roll No.:	As Against (V Standard of the Standard
Invigilator's Signature:	

CS/M.TECH (MC-VLSI)/SEM-1/PGMVD-101/2011-12

2011

ADVANCED ENGINEERING MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

1. Answer any *five* questions :

 $5 \times 2 = 10$

- a) What do you mean by 'complement of a graph'?
- b) What is the number of vertices in a 4-dimensional hypercube? Draw a hypercube of dimension 3.
- c) Define a planar graph.
- d) Draw the dual of the following graph:

e) Draw a digraph whose adjacency matrix is

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

40927 [Turn over

CS/M.TECH (MC-VLSI)/SEM-1/PGMVD-101/2011-

- f) Find the laplace transform of $f(t) = \cos \omega t$.
- g) Determine the inverse Laplace transform of $F(S) = \frac{5}{3S 1}$
- h) For a function f(x) of period 2L, write down the expression for the Fourier coefficient b_n .
- i) Write down the Fourier transform of f'(x) in terms of the Fourier transform of f(x) and ω .

GROUP - B

Answer any *six* questions. $6 \times 10 = 60$

- 2. a) What do you mean by a clique? Draw a connected graph with 7 vertices and 9 edges which contains a clique of size 4.
 - b) Prove that a tree with two or more vertices has at least two pendant vertices. 5
- 3. a) Prove that any tree with two or more vertices is 2-chromatic. 5
 - b) Define complete matching and maximal matching. StateHall's theorem in connection with matching.5
- 4. State and prove Euler's theorem for planar graphs. 10

40927 2

5. Consider the following planar graphs G_1 and G_2 which are isomorphic:

- a) Draw the dual G'_1 of G_1 and the dual G''_1 of G'_1 . Examine whether G_1 and G''_1 are isomorphic.
- b) Draw the dual G'_2 of G_2 . Examine whether G'_1 and G'_2 are isomorphie.
- 6. a) Find the chromatic polynomial of the following graph:

8

- b) If there are 4 colours, in how many ways can the vertices of the graph in (a) be properly coloured?
- 7. Using Laplace transform, solve the initial value problem,

$$y'' + 4y = f(t), y(0) = y'(0) = 0$$

in which
$$f(t) = \begin{cases} 0 & \text{for } t < 3 \\ t & \text{for } t \ge 3 \end{cases}$$
.

40927

CS/M.TECH (MC-VLSI)/SEM-1/PGMVD-101/2011-126

$$y(t) = t + \int_{0}^{t} y(\tau) \sin(t - \tau) d\tau.$$

b) Determine the Laplace transform of

$$f(t) = \frac{t}{2\beta} \sin \beta t. 4$$

9. a) Find the Fourier transform of

$$f(x) = e^{-ax^2}$$
 where $a > 0$.

- b) Find the Z transform of $(\cos \theta + i \sin \theta)^n$.
- 10. a) Find the half-range Fourier sine series for the function f(x) = x in the range $0 \le x \le 2$. Sketch the function within and outside of the given range.
 - b) Starting from the trigonometrie series

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$

establish the representation of the complex Fourier series, $viz. f(x) = \sum_{n=-\infty}^{\infty} C_n e^{inx}$

40927 4