	Utech
Name:	
Roll No.:	In Summer (V. Samueladay Stad Carelland)
Invigilator's Signature :	

CS/M.TECH/MBIN/SEM-1/MBIN-101/2012-13 2012

BIOMOLECULAR STRUCTURE & FUNCTION - I

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Q. No. 1 and any six questions of the remaining.

- 1. Answer briefly any *ten* of the following : $10 \times 1 = 10$
 - i) Bohr radius in a hydrogen atom is about 0.05 nm. What is the de Broglie wavelength of the electron in the ground state of this atom?
 - ii) Atomic number of oxygen is 8. How many 2p electrons are there in the ground state of an oxygen atom?
 - iii) What is the reduced mass of a hydrogen molecule in terms of the proton mass m?
 - iv) If ω denotes the angular frequency of a harmonic oscillator, what is the zero-point energy of this oscillator in quantum mechanics ?
 - v) Atomic orbitals of carbon in CH_4 are sp^3 hybridized. What is the angle between any two C-H bonds in the molecule?
 - vi) Write the Schrödinger wave equation for an electron in 3D space.

40969 Turn over

CS/M.TECH/MBIN/SEM-1/MBIN-101/2012-13

- vii) Free radicals are formed from in the blank)
- viii) Write the full form of CATH.
- reagent is used for cleavage of Fmoc group ix) during its deprotection in peptide synthesis. (Fill in the blank)
- HOMO of antiaromatic compounds are bonding/ x) antibonding MO (Find the correct answer)
- Except all the amino acids give the identical xi) product in Ninhydrin test. (Choose the correct one.)
 - Gly a)

b) Ala

c) Pro

- d) Lys.
- n_k is used to designate a helix. Describe the term n_k .
- 2. The electron of a hydrogen atom in its ground state is knocked off by an incident photon having energy 14.6 eV.
 - What is the wavelength of the incident photon? a)
 - If the ionization potential of the hydrogen atom is 13.6 eV, what is the de Broglie wavelength of the ejected electron? 5 + 5
- 3. The energy levels of an electron in a deep rectangular potential well are $E_n = \frac{n^2 h^2}{8mL^2}$, where L is the width of the potential well and n is a positive integer. Use this formula to calculate the absorption wavelength for an electronic transition from HOMO to LUMO in a linear conjugated molecule consisting of 10 carbon atoms (each contributing one π electron to the molecule) with average bond length = 0.14 nm. 10

40969

- 4. The rotational energy levels of a diatomic molecule are $E = \frac{J(J+1)h^2}{8\pi^2I}$, where I is the moment of inertia of the molecule about its axis of rotation. Use this formula to calculate the bond length of the HCl molecule, if the rotational transition from J=0 or J=1 in this molecule is found to occur at $3\cdot 2\times 10^5$ MHz and the atomic weight of chlorine = 35.
- 5. Assuming that the π electronic energy levels for a closed conjugated molecule consisting of N carbon atoms are given by the formula

$$\varepsilon_n = \alpha + 2\beta \cos \frac{2n\pi}{N}$$

when $n=0,\pm 1,\pm 2,...N/2$, $\alpha=-13\cdot 2\,\mathrm{eV}$ and $\beta=-2\cdot 8\,\mathrm{eV}$. Calculate (a) all the bonding and the antibonding energy levels for a benzene molecule in terms of the parameters α and β and (b) the delocalization energy per π electron in benzene. 7+3

- 6. a) Write the postulates of LCAO method and justify that Helium is monoatomic.
 - b) UV sprectum of 1, 3 butadiene can be obtained at ease while for Ethylene no normal OV spectrum can be obtained, although both contain π -electrons. Justify.
 - c) Draw the orbital representation of -CONH- group found in protein and justify its stereochemistry in terms of torsion angles. 3 + 4 + 3
- 7. a) Draw the conformational landscape in terms of conformational energy of butane with respect to rotation between C_1 – C_2 bond. How the profile changes if the rotation occurs between C_2 – C_3 ? (Use Newman projection formula)
 - b) Can 'His' be considered as aromatic? Predict the structure of 'His' at pH1.

CS/M.TECH/MBIN/SEM-1/MBIN-101/2012-13

- c) How do you rationalize the thermodynamically favourable formation of helix structure in protein from coil structure?
- d) Why is 3_{10} -helix found in short stretches while α -helices are comparatively long in sequence ?

3 + 3 + 2 + 2

- 8. a) Write the strategic plan for synthesis of peptide Ala-Lys-Ala-Lys. Between Stepwise Synthesis and Convergent fragment condensation Synthesis which one will you prefer for this peptide sequence and why?
 - b) What is dissociation constant for an amino acid? Elucidate the relation between isoelectric point (pI) and the dissociation constants(pK) of Lys.
 - c) What is 'supersecondary structure' of protein ? For a reverse β -turn with 3-residue loop, show the location of dihedral angle (ϕ, ψ) of the three loop residues in Ramchandran plot.

Given,

Planck's constant = 6.63×10^{-34} J.s

Speed of light = 3.0×10^8 m/s

 $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$

Mass of electron = $9 \cdot 1 \times 10^{-31}$ kg

Mass of protein = 1.67×10^{-27} kg.

3 + 4 + 3

=========