

Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Q.No. 1 and any six from the rest.

1. Answer any ten questions :
i) The non-aromatic system contains $(4 n+2) \pi$ electrons where $n$ can have zero value. State True / False.
ii) Choose the correct alternatives :

In cis-peptide bond Torsion angle between CO-NH is
a) $90^{\circ}$
b) $0^{\circ}$
c) $180^{\circ}$
d) $\quad-90^{\circ}$.
 determines the $\qquad$
iv) Choose the correct alternative :

At equilibrium, $\Delta G$ of a reaction is
a) negative
b) positive
c) zero
d) no specific value.
v) Choose the correct alternative :

Hydrogen bond is a $\qquad$ interaction.
a) strong electrostatic
b) covalent
c) van der Waal
d) weak electrostatic.
vi) Arrange the energy requirement for the following transactions in the ascending order :
$\pi-\pi^{*}, \quad \sigma-\sigma *$ and $n-\pi^{*}$.
vii) The ground state energy of a hydrogen atom is -13.6 eV . What is the energy of the first excited state?
viii) What is the magnitude of the angular momentum of an electron of mass $m$ moving with uniform angular speed $v$ in an atomic orbit of radius $r$ ?

CS / M.TECH (MBIN) / SEM-1 / MBIN-10292010-11
viresh
ix) What is the de Broglie wavelength of an electron in the ground state of a hydrogen atom having a radius of $0 \cdot 52 \AA$ ?
x) What is LCAO approximation in molecular orbital theory ?
xi) Define $\pi$ delocalization energy.
xii) What is the angle between any two bonds in methane with $s p^{3}$ hybridized orbitals?
2. a) In an electron microscope, a beam of free electrons is used. Show that the de Broglie wavelength of these electrons varies inversely as the square root of their energy $E$.
b) Calculate the energy of an $X$-ray photon having a wavelength of $1 \cdot 0 \AA$. Express your result in electronvolts.
(Given : $h=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}, c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$,

$$
\left.1 \mathrm{eV}=1 \cdot 6 \times 10^{-19} \mathrm{~J}\right)
$$

$$
5+5
$$

CS / M.TECH (MAIN) / SEM-1 / MBIN-103 $92010-11$
viresh
3. a) Solve Schrödinger equation to find the energyalevels of an electron of mass $m$ moving freely in a deep one-dimensional potential well of width $L$.
b) In the linear conjugated part of a 'Vitamin A' molecule, $12.0 \AA$ long, there are ten $\pi$ electrons. Calculate the energy gap between the highest occupied and the lowest unoccupied levels in electron-volts.
(Given : mass of electron $m=9 \cdot 1 \times 10^{-31} \mathrm{~kg}$ ) $\quad 5+5$
4. a) Calculate the reduced mass of a carbon monoxide molecule CO, given that the proton mass is $1.67 \times 10^{-27} \mathrm{~kg}$ and the atomic weights of carbon and oxygen are 12 and 16 respectively.
b) What is the frequency of microwave radiation emitted (in MHz ) in a rotational transition from $J=1$ to $J=0$ for CO, whose bond length is $1 \cdot 13 \AA$ ? $3+7$
5. a) From the Molecular Orbital concept, justify that $\mathrm{H}_{2}$ is diatomic while He is monatomic.
b) Can the amino acid 'His' show aromatic character ? Identify the site for protonation in histidine side chain.

CS / M.TECH (MBIN) / SEM-1 / MBIN-10. 9 2010-11
Nrech
c) What is an antiaromatic compound ? Using Molecular Orbital concept, compare its stability over aromatic compound. $3+3+4$
6. a) Define strength of an acid in terms of dissociation constant. What is 'isoelectric point' of an amino acid ? How does isoelectric point of an amino acid solution correlate with dissociation constant ?
b) Draw the energy profile diagram of an $\alpha$-helix formation from random coil, assuming that
(i) it is a two state process,
(ii) it is a three state process where $3_{10}$-helix is an intermediate and the intermediate state formation is the rate determining step.
c) Starting from $100 \%$-configuration in a reaction an enantiomeric product mixture of $30 \%$-and rest amount of $L$-is formed. Calculate the amount of the enantiometric excess. $4+4+2$

[^0]Identify the conformers in each case.
b) Out of the two following amino acids in a peptide sequence
(i) $-\mathrm{NH} \mathrm{CH}_{2} \mathrm{CO}$-(Gly) and (ii) $-\mathrm{NH} \mathrm{CMe}_{2} \mathrm{CO}$-(Aib)which one has higher energy of torsion against the dihedral angle $\phi$ ? Also predict which amino acid has the higher allowed space in Ramachandran plot?
c) Define a 3: $3 \beta$-hairpin turn.

$$
5+3+2
$$

8. a) With the help of 'helical wheel' diagram of an $\alpha$-helix and $3_{10}$-helix consisting of $L$-amino acids only, justify that although $3_{10}$-helix is kinetically favourable, $\alpha$-helix is thermodynamically more preferred.
b）Draw the cartoon diagram of a＇Greek key motif＇ structure．Identify its secondary and supersecondary structures．
c）How do synthesize amino acid Ala from amino acid Gly ？$\quad 5+3+2$
[^1]
[^0]:    7. a) Draw the schematic representation of potential energy distribution of $n$-butane (using Newman projection) as function of angle of torsion about
    (i) C1-C2 bond rotation and
    (ii) $\mathrm{C} 2-\mathrm{C} 3$ bond rotation.
[^1]:    ＝ニニニニニニニニニニニ＝

