|                           | Utech                                 |
|---------------------------|---------------------------------------|
| Name:                     |                                       |
| Roll No.:                 | To Owner by Exercising and Exercising |
| Invigilator's Signature : |                                       |

## CS/M.Tech(IT)/SEM-2/PGIT-204/2013 2013

## **COMMUNICATION SYSTEM**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *seven* questions.  $7 \times 10 = 70$ 

1. Anser any five questions:

- $5 \times 2$
- a) What is the relationship between time, information capacity and channel baondwidth? What will happen to the output signal if sampling rates are too low?
- b) Explain the term AWGN.
- c) Define power spectral density (PSD).
- d) What is meant by signal scintillation? Name the primary source of scintillation at L-band frequency.
- e) What do you understand by EIRP?

30404 (M.Tech)

[ Turn over

## CS/M.Tech(IT)/SEM-2/PGIT-204/2013

- f) What are the advantages of TDMA technique?
- g) Define BER. What is the typical value of BER for satellite communication links?
- h) What are the differences between power signal & energy signal?
- 2. a) Draw a typical block diagram of digital communication system with analog source, analog destination and analog channel. Explain the working of different blocks. 2+3
  - b) What are the advantages of digital communication over analog communication?
- 3. Define the term C/N and C/No. Why are these parameters important in digital communication ? Explain with an example. 5+5
- 4. a) Describe Pulse Amplitude Modulation ( PAM ) technique. Explain the term "pulse regeneration" with a descriptive example. 2+3
  - b) Why is signal modulation scheme used in communication ? Describe the principle of BPSK modulation. 2+3
- Describe the working of the different components of space segment in satellite communication system.



- 6. Draw a block diagram of a communication receiver. Indicate the various noise sources in the system and draw the equivalent noise model of the receiver. 3 + 7
- 7. For a satellite system, following information are given:

Satellite range = 40,000 km

Frequency = 11 GHz

Transmitted power = 2W

Antenna gain = 17 dB ( global beam )

Calculate:

- a) flux density on earth's surface
- b) power received by antenna with effective aperture of  $10 \text{ m}^2$ .
- c) received C/N assuming  $T_s$  = 152K and BW = 500 MHz [Boltzmann contant =  $1.38 \times 10^{-23}$ ]
- 8. What are the benefits of satellite communication over terrestrial network? Explain the terms "uplink", "downlink" and "transponder" in a satellite communication system. Why is uplink frequency always higher that downlink frequency?

4 + 3 + 3

## CS/M.Tech(IT)/SEM-2/PGIT-204/2013

- 9. What are the various satellite orbits in terms of altitudes? Indicate the major characteristics of these orbits. Which orbit do you feel best suitable for communication satellite and why? 2+5+3
- 10. a) What are the major signal impairments in satellite communication links due to earth's atmosphere? 5
  - b) Define the term XPD. Why is depolarization important factor for designing the communication link? 3+2

30404 (M.Tech)