	<u> Unean</u>
Name:	
Roll No.:	An Annual Of Commission and Conferen
Inviailator's Signature:	

CS/M.TECH (IT-SE)/SEM-1/MSE-104/2011-12

2011 DISCRETE STRUCTURE

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions. $5 \times 14 = 70$

2

- a) Prove that a non-trivial finite ring having no divisor of zero is a ring with unity.
 - b) Define Integral Domain.
 - c) A commutative ring R with unity is an integral domain iff for every non-zero element a in R $a.u = a.v \Rightarrow u = v$; where u, $v \in R$. Prove.
- 2. a) Let (G, \bullet) be an Abelian group and $H = \{ a^2 \mid a \in G \}$. Prove that H is a subgroup of G.
 - b) Does the set of all 2 × 2 non-singular matrices over integers form a group under matrix multiplication?
 Justify.

40409 [Turn over

CS/M.TECH (IT-SE)/SEM-1/MSE-104/2011-12

- b) Prove that the inverse of inverse of an element in a group (G, \bullet) is the element itself.
- c) Show that the following relation R on \mathbb{Z} is an equivalence relation $R = \{ (a, b) ; a, b \in \mathbb{Z} \text{ and } a^2 + b^2 \text{ is a multiple of } 2 \}.$
- 4. a) Prove that a connected graph is a tree if and only if it has fewer edges than vertices.
 - b) Show that number of pendant vertices in a binary tree having n vertices is (n + 1) / 2.
 - c) Define level of a vertex in a binary tree and illustrate through example.
- 5. Use Ford-Fulkerson algorithm to find a maximal flow for the following network :

40409

6. Find a shortest path from the vertex a to the vertex z by using Dijkstra's algorithm:

7. Find a minimal spanning tree for the following graph by using Prim's algorithm:

