	(Ulech)
Name:	
Roll No.:	As States Witnesside 2nd Explored
Inviailator's Signature :	

CS/M.TECH(EIE)/SEM-2/EIEM-203/2012

2012 PROCESS CONTROL SYSTEM DESIGN

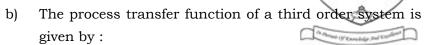
Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions. $5 \times 14 = 70$

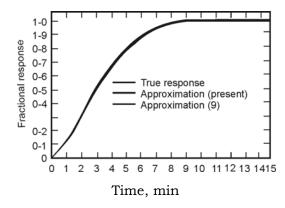
- 1. a) Name the different experimental techniques for identification of process dynamics.
 - b) What is meant by first moment of a process reaction curve? Show analytically how by using this method the parameters of an overdamped system can be evaluated.


3 + (3 + 8)

- 2. a) Describe the Ziegler-Nichlos Method of Tuning.
 - b) Name the different types of Dynamic processes and give suitable example for each one of them. 4 + 10
- a) Derive the overall transfer function of a Spring Mass –
 Damper system for application of a external force *F* and corresponding displacement *x* (*t*).

30154(M.Tech)

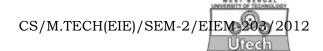
[Turn over


CS/M.TECH(EIE)/SEM-2/EIEM-203/2012

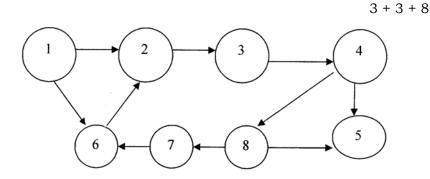
G (s) =
$$\frac{C(s)}{R(s)} = \frac{1}{(s+1)(5s+1)(0\cdot2s+1)}$$

Where the time constants are expressed in minutes. The true response of C(t) to a step change in input X(t) is shown in the following figure. Approximate this process by a second order plus dead time model. Given that the first moment m_1 is computed to be 3.5 mins and the tangent line drawn at the point of inflexion of the plot has a slope $M_i = 0.23 \, \mathrm{min}^{-1}$, and it intersects $C(t) = 1 \, \mathrm{line}$ at $t_m = 5.1 \, \mathrm{min}$.

(Use the relation : For $\lambda = 0.32$, $\eta = 0.8$)



Comparison of True Response with Approximate Response of an Overdamped Second Order System.


6 + 8

- 4. a) Name the different parts of a Distillation column with proper sketch.
 - b) Describe its principle of operation and derive the model of the Distillation column. 4 + 10

30154(M.Tech)

- 5. a) What are the significant advantages of a Distributed Control Network over a single centralized computer?
 - b) What are the main components of a typical DCN? Explain briefly with a diagram.
 - c) Draw the architectural & functional diagrams at a typical local controller in a DCN & specify some of its most important parameters.
 - d) What is a data link & how its characteristics can be determined? 2 + 4 + 5 + 3
- a) Discuss the merits & demerits of a fuzzy logic controller
 & convert an analog PI control action into a discrete one.
 - b) Write a short note on different types of membership function. (2 + 4) + 8
- 7. Explain the design principle of a two input fuzzy PD controller with proper block diagram.
- 8. What is a diagraph? What is a transition matrix? Write the transition matrix for the following diagraph:

30154(M.Tech)

3

[Turn over

CS/M.TECH(EIE)/SEM-2/EIEM-203/2012

- 9. a) What is a Data hold device & how is the order of such a device determined? Justify your statement analytically.
 - b) Obtain the transfer function of a zero order hold device.
 - c) Show the input/output relationship of the zero-order hold appending sketches. 4 + 8 + 2