	<u>Uffecth</u>
Name :	
Roll No. :	A Among Williamships and Exclared
Inviailator's Sianature :	

CS/M.TECH (EIE)/SEM-2/EIEM-204 b/2011

2011 MEDICAL INSTRUMENTATION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions

 $5 \times 14 = 70$

- 1. a) Explain the function of an electrode as a transducer.
 - b) Draw the equivalent circuit of an electrode.
 - c) What are the different types of electrodes? Differentiate them according to their electrical characteristics and applications.
 - d) A skin surface electrode is used to measure bioelectrical potential using a preamplifier. The Bodemagnitude plot of the electrode-lead assembly is shown below. Design the input circuit taking skin surface electrode resistance as 100 ohm.
 2 + 2+ 4 + 6

30280 (M.Tech)

[Turn over

CS/M.TECH (EIE)/SEM-2/EIEM-204 b/2011

- 2. a) Name the factors that are considered in the design of biomedical instrument system.
 - b) Derive the transfer function of the generalized input circuit to preamplifier using skin surface electrode. What will be a change in transfer function when someone is using a microelectrode?
 - c) Draw the polar plots of the each and put your comments on the deviations. 4 + 6 + 4
- 3. a) Differentiate between ECG, VCG and ECHO cardiography.
 - b) With the neat diagram explain the working of the ultrasonic blood flowmeter.
 - c) Define bipolar and unipolar lead systems. Draw and explain Einthoven's Triangle.
 - d) Describe the 12-lead system used in ECG and also explain the procedure to record the ECG signal.

3 + 3 + 3 + 5

- 4. a) State the basic principle of ultrasonography.
 - b) Draw the circuits of ultrasonic transmitter and receiver stating the operating frequency range.
 - c) What are the different scanning modes in ultrasonography ? Mention the corresponding application fields.
 - d) Explain the terms Acoustic Impedance, Attenuation Constant related to ultrasonography.
 - e) Why are lower ultrasonic frequencies used for deeper penetration? 2 + 3 + 4 + 3 + 2

- 5. a) What are the different blood flowmeters?
 - b) Explain the impedance plethysmography for blood flowmeter.
 - c) What are the other physiological quantities that can be estimated with the help of impedance plethysmography?
 - d) Explain with a neat and labeled diagram the principle of cardiac output measurement by Fick's method.

2 + 4 + 2 + 6

- 6. a) What is resting potential of a cell? Give typical values.
 - b) What is an action potential? How can it be evoked?
 - c) What are the properties of cell membrane action potential?
 - d) How does action potential propagate?
 - e) What is neuronal spike? Draw a typical spike showing amplitude and duration.
 - f) How does the sodium pump work ? 2 + 3 + 2 + 2 + 3 + 2
- 7. a) Write and explain Goldman's constant field equation. Find the value of $E_{\rm m}$ (membrane potential) of potassium ions using Goldman series.
 - b) If concentration gradient of potassium ions = 4meq./L and that inside the cell = 155 meq./L. Find potential difference across the cell membrane using Nernst Equation.

CS/M.TECH (EIE)/SEM-2/EIEM-204 b/2011

c)

- Draw and Explain Hodgkin-Huxley equivalent circuit theory. Put your comments on this circuit theory
- d) If membrane resistance to all ions are equal (assume) then what will be the value of the potential? Data given are P_{K+} : P_{Na+} : P_{cl-} = 1:0.04 :0.45, where P stands for permeability of the ions.

Concentration in mmol/L

regarding the accuracy of the resting potential.

	Na^{+}	K^{+}	Cl ⁻	
Outside the cell	145	5	110	
Inside the cell	12	160	10	
			1 + 3 + 3	

4 + 3 + 3 + 4

- 8. a) Explain the basic principle of Infrared imaging technique.
 - b) Draw the block diagram of the scanning and displaying arrangement for Infrared imaging.
 - c) Why is thermal imaging reliable for diagnosing breast cancer? 4+6+4
- 9. Write short notes on any two of the following: 2×7
 - a) Hearing aids
- b) Artificial heart
- c) Half cell potential
- d) Infrared detectors.