
#### Abstract

Name: Roll No. $\qquad$ $\qquad$ $\qquad$


CS/ M.Tech(EIE)/ SEM-2/ EIEM-204C/ 2012 2012

DIGITAL SIGNAL AND IMAGE PROCESSING
Time Allotted : 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

## GROUP - A

Answer any five questions.

1. a) If $X(n)$ has the $Z$-transform as $X(Z)$, prove that $x(n-1)$ has the $Z$-transform of $Z^{-1} X(Z)$.
b) Prove that $Y(Z)=X(Z) H(Z)$ when

$$
y(n)=x(n) * h(n) .
$$

c) If $x(n)$ is real and even, then what is the characteristic of its DFT?
d) For the signal sequence $x(n)=a^{n}$ for $n \geq 0$ and $x(n)=b^{n}$ for $n<0 \quad[|a|<|b|]$, where is the region of convergence?
e) If $X(Z)=\left(Z^{2}-3\right) /\left(2 Z^{2}-5 Z+1\right)$, find $x(0)$.
f) Define a recursive process.

CS/M.Tech(EIE)/SEM-2/EIEM-204C/2012
GROUP - B
Answer any five questions.

2. a) A system is defined by the difference equation $y(n)-2 k y(n)+k^{2} y(n-2)=x(n)$. Determine the range of the parameter $k$ for which system is stable.
b) Determine the transfer function $h(n)$ of the system. 4
c) Using initial value theorem, find $h(0)$.
d) Draw the region of convergence.
3. a) Determine the inverse $Z$-transform of

$$
H(Z)=(Z+2) /\left(2 Z^{2}-7 Z+3\right)
$$

b) Realise a system network to implement the function $y(n)-2 y(n-1)+3 y(n-2)=3 x(n)+2 x(n-1)+x(n-2)$ using direct form II. 6
4. a) What is radix-2 FFT algorithm ? What are the decimation in frequency and decimation in time in FFT ? How many complex multiplication and complex addition operations are required for 1024 points radix-2 butterfly structure of FFT?
$2+2+2$
b) Find $y(n)=x_{1}(n) * x_{2}(n)$ by DFT and IDFT method, where $x_{1}(n)=[1,2,2,1]$ and $x_{2}(n)=[1,1,1,1]$.
5. a) Find the expression for a first order low-pass butterworts filter with 3 dB cut-off frequency of $0.2 \pi$ using bilinear transformation. 6
b) Realise above filtre with direct form-II.

6
6. What are the applications of morphological operations ? Define morphological dilation and emotion operation in image processing. What are the properties of dialation ? $4+4+4$
7. Define segmentation. Suppose there are two types of regions $R_{1}$ and $R_{2}$ in a gray level image. Gray level pixels of $R_{1}$ follow the Gaussian distribution with mean $\mu_{1}$ and variance $\sigma$ and those of $R_{2}$ follow mean $\mu_{2}$ and same variance. If the probabities are $P_{1}$ and $P_{2}$ for the regions $R_{1}$ and $R_{2}$ respectively, find the optimum threshold for image segmentation.
8. a) What is image compression ? Briefly mention the types of image compression. $2+3$
b) Find out the code words and average code length using Huffman coding scheme for the set of events Si and probabilities as given below :

| Input | $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | $S_{5}$ | $S_{6}$ | $S_{7}$ | $S_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Probabilities | 0.30 | 0.20 | 0.15 | 0.15 | 0.10 | 0.05 | 0.03 | 0.02 |

9. The frequency domain characteristics of a low pass filtre is $H_{\mathrm{d}}(\omega)=e^{-3 j \omega}$ for $0 \leq \omega \leq \frac{\pi}{2}$ and $H_{\mathrm{d}}(\omega)=0$ for $\frac{\pi}{2}<\omega \leq \pi$. Determine the transfer function $h_{d}(n)$ by frequency sampling method with $N=7$. 12
