	Utech
Name:	
Roll No.:	A Quantify Saminley 2nd Explant
Invigilator's Signature :	

CS/M.Tech(EIE)/SEM-2/EIEM-204C/2012 2012

DIGITAL SIGNAL AND IMAGE PROCESSING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

Answer any *five* questions.

 $5 \times 2 = 10$

- 1. a) If X(n) has the Z-transform as X(Z), prove that X(n-1) has the Z-transform of $Z^{-1}(X)$.
 - b) Prove that Y(Z) = X(Z) H(Z) when $y(n) = x(n)^* h(n).$
 - c) If x (n) is real and even, then what is the characteristic of its DFT?
 - d) For the signal sequence $x(n) = a^n$ for $n \ge 0$ and $x(n) = b^n$ for n < 0 [|a| < |b|], where is the region of convergence?
 - e) If $X(Z) = (Z^2 3) / (2Z^2 5Z + 1)$, find X(0).
 - f) Define a recursive process.

30155 (M.Tech)

[Turn over

CS/M.Tech(EIE)/SEM-2/EIEM-204C/2012

GROUP - B

- 2. a) A system is defined by the difference equation $y(n) 2k y(n) + k^2 y(n-2) = x(n)$. Determine the range of the parameter k for which system is stable.
 - b) Determine the transfer function h(n) of the system. 4
 - c) Using initial value theorem, find *h* (0).
 - d) Draw the region of convergence. 2
- 3. a) Determine the inverse Z-transform of

$$H(Z) = (Z + 2) / (2Z^2 - 7Z + 3).$$
 6

b) Realise a system network to implement the function

$$y(n) - 2y(n-1) + 3y(n-2) = 3x(n) + 2x(n-1) + x(n-2)$$

using direct form II.

- 4. a) What is radix-2 FFT algorithm ? What are the decimation in frequency and decimation in time in FFT ? How many complex multiplication and complex addition operations are required for 1024 points radix-2 butterfly structure of FFT ? 2+2+2
 - b) Find $y(n) = x_1(n) * x_2(n)$ by DFT and IDFT method, where $x_1(n) = [1, 2, 2, 1]$ and $x_2(n) = [1, 1, 1, 1]$.

- 5. a) Find the expression for a first order low-pass butterworth filter with 3dB cut-off frequency of 0.2π using bilinear transformation.
 - b) Realise above filtre with direct form-II.
- 6. What are the applications of morphological operations? Define morphological dilation and erotion operation in image processing. What are the properties of dialation? 4 + 4 + 4
- 7. Define segmentation. Suppose there are two types of regions R_1 and R_2 in a gray level image. Gray level pixels of R_1 follow the Gaussian distribution with mean μ_1 and variance σ and those of R_2 follow mean μ_2 and same variance. If the probabities are P_1 and P_2 for the regions R_1 and R_2 respectively, find the optimum threshold for image segmentation.
- 8. a) What is image compression? Briefly mention the types of image compression. 2+3
 - b) Find out the code words and average code length using Huffman coding scheme for the set of events Si and probabilities as given below:

Input	S_1	S_2	S_3	S_4	S_5	S_6	S 7	S_8
Probabilities	0.30	0.20	0.15	0.15	0.10	0.05	0.03	0.02

6

CS/M.Tech(EIE)/SEM-2/EIEM-204C/2012

9. The frequency domain characteristics of a low pass filtre is $H_{\rm d}$ (ω) = ${\rm e}^{-3j\omega}$ for $0 \le \omega \le \frac{\pi}{2}$ and $H_{\rm d}$ (ω) = 0 for $\frac{\pi}{2} < \omega \le \pi$. Determine the transfer function $h_{\rm d}$ (n) by frequency sampling method with N=7.