

Invigilator's Signature : \qquad

CS/ M.Tech(EE)/ SEM-2/ CAM-205(B)/ 2012 2012 POWER SYSTEM OPERATION \& CONTROL

Time Allotted : 3 Hours

Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five of the following. $\quad 5 \times 14=70$

1. a) Derive the optimum condition for hydro-thermal scheduling considering network losses.
b) A hydrothermal system is considered which consists of one thermal and one hydro-generating station. The operating cost of thermal station is given by :
$F_{1}=100+0.1 P_{1}+0.01 P_{1}{ }^{2} \mathrm{Rs} . / \mathrm{hr}$
The rate of discharge of hydro-generating station is given by :
$q_{1}=140+20 P_{2}+0.05 P_{2}^{2} \mathrm{~m}^{3} / \mathrm{hr}$.
Assume that the transmission losses are 0 and the reservoir is large. The water available in the reservoir is :
$V_{1}=25,000 \mathrm{~m}^{3}$ and the total demand for the first hour is 250 . Find the economic schedule. (Perform up to 2 iterations and use equal amount of hydel and thermal generation as an initial case)
$7+7$
2. a) A sub-grid has a total capacity of 4000 MW. It encounters a load increase of 50 MW -if the normal operating load is 2500 MW. Assume inertia constant to be 5 secs and regulation of the generators in the system as $3 \mathrm{~Hz} /$ pu MW. Find :
i) ALFC loop parameters
ii) Static frequency drop
iii) Transient response of ALFC loop.
(Assume load frequency dependency to be linear)
b) Derive the equation for transient response of an ALFC loop.
3. a) Derive the optimum condition for economic load dispatch considering network losses.
b) Determine the economic schedule to meet the demand of 150 MW and the corresponding cost of generation. Data given are :

Unit 1:
$F_{1}\left(P_{1}\right)=200+10.333 P_{1}+0.00889 P_{1}^{2} \mathrm{Rs} . / \mathrm{hr}$
Unit 2 :
$F_{2}\left(P_{2}\right)=240+10.833 P_{2}+0.00741 P_{2}^{2} \mathrm{Rs} . / \mathrm{hr}$
The transmission losses are given by :
$P_{L}=0.001 P_{1}^{2}+0.001 P_{2}^{2}-2 \times 0.0002 P_{1} P_{2}$
(Perform two iterations)
$6+8$
4. Prove that:
$\dot{x}=\left(H^{T} W H\right)^{-1} H^{T} W_{z}$, where the symbols have their usual meanings.

Estimate two values of random variables x by WLSE method for a given measurement vector z and weighing vector y as :

$$
z=\left[\begin{array}{l}
0.71 \\
0.65 \\
0.75
\end{array}\right], \quad H=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 1
\end{array}\right] . W=\left[\begin{array}{ccc}
0.3 & 0 & 0 \\
0 & 0.5 & 0 \\
0 & 0 & 0.4
\end{array}\right]
$$

Also find : i) covariance of estimation error if $R=I$
ii) optimum value of error covariance matrix.

$$
5+9
$$

5. a) Write the algorithm for non-linear state estimation.
b) Derive the optimum condition for long-term hydrothermal scheduling. What is the power at the optimum condition?
c) What do you mean by B co-efficients ? What are the constraints in economic dispatch problem? $3+7+4$
6. a) Consider a 3 bus system. The series impedance and shunt admittance of each line are :
($0.0197+j 0.0788$) pu and $j 0.04$ pu respectively. The bus specification and power input at the bus is as under

Bus	P_{G}	Θ_{G}	P_{L}	\mathcal{B}_{L}	Bus voltage
1	-	-	2.0	1.0	$1.04 L 0^{\circ} \mathrm{pu}$
2	0.5	1.0	-	-	unspecified
3	-	-	1.5	0.6	$1.04 L 0^{\circ} \mathrm{pu}$

Form $Y_{\text {bus }}, P_{2}{ }^{0}, Q_{2}{ }^{0}, P_{3}{ }^{0}$ and voltage of bus 2 by $N-R$ method (perform one iteration).
b) What is the significance of swing bus in load flow studies?
7. a) Use Dynamic programming method to determine the most economical units to be committed to supply a load of 9 MW . There are 4 units with the following data :

$$
\begin{aligned}
& C_{1}=23 P_{1}+0.45 P_{1}^{2} \\
& C_{2}=22 P_{2}+0.5 P_{2}^{2} \\
& C_{3}=21 P_{3}+0.5 P_{3}^{2} \\
& C_{4}=20 P_{4}+0.5 P_{4}^{2}
\end{aligned}
$$

The maximum and minimum limits for each unit are 6 MW and 1 MW respectively.
b) What are the constraints in Unit Commitment problem? $12+2$
8. Write short notes on any two of the following : $7+7$
a) Deregulation
b) Dynamic programming method
c) Optimal power flow.

