	Ulech
Name:	
Roll No. :	The Annual Of Street Street Street Street
Inviailator's Sianature :	

CS/M.TECH(EE)/SEM-1/PSM-102/2011-12 2011

POWER SYSTEM ANALYSIS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions. $5 \times 14 = 70$

- 1. a) Write down the flow chart for load flow solution using G.S. method including voltage control buses. 6
 - b) The following is the system data for a load flows solution line data:

Bus-to-Bus	Admittance		
1 – 2	2 - j 8		
1 – 3	1 - j 4		
2 – 3	0·666 – <i>j</i> 2·664		
2 – 4	1 - j 4		
3 – 4	2 - j 8		

Bus data:

Bus	P	Q V		Remarks
1	_	_	1.06	Slack
2	0.5	0.2	1	<i>PQ</i> bus
3	0.4	0.3	1	<i>PQ</i> bus
4	0.3	0.1	1	PQ bus

Determine the voltages at the end of 1st iteration using G.S. method. Take $\alpha = 1.6$, $\alpha =$ acceleration factor. 8

40362 Turn over

CS/M.TECH(EE)/SEM-1/PSM-102/2011-12

- 2. a) What is the significance of Reference bus in load flow solution?
 - b) The sample data for load flow is given below. Determine the set of load flow equations at the end of 1st iteration by using N.R. method.

Line date:

Bus-to-Bus	Impedance
1 – 2	0·08 – j 0·24
1 – 3	0·02 – <i>j</i> 0·06
2 - 3	0·06 − <i>j</i> 0·18

Bus data:

Bus	Voltage	Generation		Load	
		MW	MVAR	MW	MVAR
1	1.06	0.0	0.0	0.0	0.0
2	1.0	0.2	0.0	0.0	0.0
3	1.0	0.0	0.0	0.6	0.25

- 3. What is the expression for critical receiving end voltage and critical power angle at voltage stability limit for a two bus power system?
- 4. a) Derive the relation between voltage and reactive power at a node in a power system.
 - b) Determine the ohmic value of the current limiting reactor per phase external to a 30 MVA, 11 KV, 50 Hz, 3-phase synchronous generator which can limit the current on short circuit to 6 times the full load current. The reactance of the synchronous generator is 0.06 p.u.

7

5. Draw the per unit impedance diagram of the system shown in figure. Assume base values are 100 MVA and 100 KV.

 $G_1: 50 \text{ MVA}, \ 12 \cdot 2 \text{ KV}, \ X_{G_1} = 0 \cdot 10 \text{ p.u.}$

 G_2 : 20 MVA, 13·8 KV, X_{G_2} = 0·10 p.u.

 $T_1: 80 \text{ MVA}, \ 12 \cdot 2 / 132 \text{ KV}, \ X_{T_1} = 0 \cdot 10 \text{ p.u.}$

 T_2 : 40 MVA, 13·8/132 KV, X_{T_1} = 0·10 p.u.

Load: 50 MVA, 0.80 p.f. lagging operating at 124 KV. 14

- 6. a) What is small signal stability and what are the various modes of oscillations? 2 + 4
 - b) Explain the mechanism of tie line oscillations. What are its properties? 4 + 4
- Find the expression for undamped natural frequency of power system oscillation and the damping ratio for a single machine infinite bus system.

========