Name:	\&/
Roll No. :	~ ~
Inviailator's Sianature :	

CS/M.Tech (EE)/SEM-1/CAM-103(B)/2012-13

2012 MODELLING & SIMULATION OF DYNAMIC SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.

- 1. a) What do you mean by static and dynamic systems?

 Enlist the various representations of a dynamic system.
 - b) Consider the following unforced nonlinear system given by,

$$x_1 = -x_1 + 2x_1^3 + x_2$$

&
$$x_2 = x_1^2 - x_2$$

Obtain the equilibrium points of the system and a linearized state space model about any one of the equilibrium points. Also obtain the simulation block diagram representation of the non-linear system. 5 + 9

40171 [Turn over

CS/M.Tech (EE)/SEM-1/CAM-103(B)/2012-13

2. Consider the "Inverted pendulum on Cart" system. Find the non-linear and linear differential equation modelling of the system by Euler-Lagrangian equation. Assume the following notations:

Pendulum angle from vertical = θ

Cart displacement = x

Control force applied to cart = F

Mass of stick = m

Mass of cart = M

Length of pendulum = 2l

Moment of inertia of pendulum rod = I

Coefficient of friction of cart = b

14

3. a) Derive a state equation for the electric circuit as shown below. Assume the current through the inductor and the voltage across the capacitor as the state variables.

- b) What is state transition matrix and what is its significance? 11 + 3
- 4. a) Discuss Gilbert's test for controllability.
 - b) Check whether the following system is controllable or not by Gilbert's test:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

40171

$$G(s) = \frac{3s^3 + 3s^2 + 2s + 4}{s^4 + 8s^3 + 18s^2 + 16s + 1}$$

- a) Obtain its 2nd order Routh approximant.
- b) Also find out its 2^{nd} order Pade approximant having one zero. 7 + 7
- 6. a) What do you mean by Monte Carlo simulation technique? Use this technique to determine the value of $\ln 2$.
 - b) Use mixed congruential method to generate a sequence of ten random numbers in the interval [0, 1] assuming $x_o = 29$, a = 5, b = 17 and m = 100. 9 + 5
- 7. Write short notes on any *two* of the following : 2×7
 - a) Euler's and improved Euler's methods for solution of ODEs
 - b) Finite difference method for solution of PDEs
 - c) Balanced truncation method
 - d) Bond graph modelling.