Name :
 \qquad
 Roll No. :

 Invigilator's Signature :
 CS/M.Tech (EE)/SEM-1/CAM-103(B)/2012-13

 2012

 2012
 MODELLING \& SIMULATION OF DYNAMIC SYSTEMS

Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.

1. a) What do you mean by static and dynamic systems ? Enlist the various representations of a dynamic system.
b) Consider the following unforced nonlinear system given by,

$$
\dot{x}_{1}=-x_{1}+2 x_{1}^{3}+x_{2}
$$

$\% \quad \dot{x}_{2}=x_{1}^{2}-x_{2}$

Obtain the equilibrium points of the system and a linearized state space model about any one of the equilibrium points. Also obtain the simulation block diagram representation of the non-linear system. $5+9$
2. Consider the "Inverted pendulum on Cart" system. Find the non-linear and linear differential equation modelling of the system by Euler-Lagrangian equation. Assume the following notations :

Pendulum angle from vertical $=\theta$
Cart displacement $=x$
Control force applied to cart $=F$
Mass of stick $=m$
Mass of cart $=M$
Length of pendulum $=2 l$
Moment of inertia of pendulum rod $=I$
Coefficient of friction of cart $=b$
14
3. a) Derive a state equation for the electric circuit as shown below. Assume the current through the inductor and the voltage across the capacitor as the state variables.

b) What is state transition matrix and what is its significance ?
4. a) Discuss Gilbert's test for controllability.
b) Check whether the following system is controllable or not by Gilbert's test :

$$
A=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

5. Consider a $4^{\text {th }}$ order transfer function $G(s)=\frac{3 s^{3}+3 s^{2}+2 s+4}{s^{4}+8 s^{3}+18 s^{2}+16 s+1}$
a) Obtain its $2^{\text {nd }}$ order Routh approximant.
b) Also find out its $2^{\text {nd }}$ order Pade approximant having one zero.
6. a) What do you mean by Monte Carlo simulation technique ? Use this technique to determine the value of $\ln 2$.
b) Use mixed congruential method to generate a sequence of ten random numbers in the interval [0,1] assuming $x_{o}=29, a=5, b=17$ and $m=100 . \quad 9+5$
7. Write short notes on any two of the following : 2×7
a) Euler's and improved Euler's methods for solution of ODEs
b) Finite difference method for solution of PDEs
c) Balanced truncation method
d) Bond graph modelling.
