CS/M.Tech (EE)/SEM-1/CAM-103B/2011-12 2011 MODELLING AND SIMULATION OF DYNAMIC SYSTEMS

Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions of the following

1. a) What do you mean by modelling and simulation ?

Briefly discuss their advantages and disadvantages.
b) Obtain block diagram representations of
i) the predator-prey dynamics given by,
$x(k+1)=\alpha x(k)-\beta x(k) y(k)$ and
$\mathrm{y}(\mathrm{k}+1)=-\gamma \mathrm{y}(\mathrm{k})+\delta \mathrm{x}(\mathrm{k}) \mathrm{y}(\mathrm{k})$ where $\alpha, \beta, \gamma, \delta$ are constants
ii) Van-der Pol oscillator given by,
$\ddot{x}-1.5 \dot{x}\left(1-x^{2}\right)+x=0$ with $x(0)=0$ and
$x(0)=-1$
2. a) How does a pure time delay affect the behavieur of a closed loop system ? Obtain the 2nd order Pade approximation of a pure time delay.
b) What are Zero and First Order Hold devices ? Obtain their transfer functions. $8+6$
3. Obtain a state space model of the following electrical network. Choose i_{3} and v_{c} as the output variables.

4. a) Consider a 5th order transfer function $G(s)=\frac{3 s^{4}+2 s^{3}+s^{2}+4 s+2}{3 s^{5}+5 s^{4}+s^{3}+2 s^{2}+2 s+1}$.

Determine a Pade approximant of $G(s)$ having three poles and one zero.
b) Using Modal Truncation method, obtain a 1st order state space model for the following 2 nd order system -
$\dot{X}=\left[\begin{array}{cc}0 & 1 \\ -3 & -4\end{array}\right] X+\left[\begin{array}{l}0 \\ 1\end{array}\right] U$ and $Y=\left[\begin{array}{ll}1 & 0\end{array}\right] X \quad 8+6$
5. Derive Lagrange's energy equation.

6. a) Obtain the Bond graph models for series R-L-C and parallel R-L-C circuits.
b) Obtain the state transition matrix and its inverse for the following system -

$$
\dot{X}=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right] X \quad 7+7
$$

7. Write short notes on any two of the following $7+7$
a) 4th order Runge-Kutta method for solution of ODEs
b) Finite Difference method for solution of PDEs.
c) Separation principle
d) Discretization of state equation.
