Name :
 Roll No.
 \qquad Invigilator's Signature :
 \qquad
 Uresh
 CS/M.Tech (EE)/SEM-1/EEP-105/2009-10 2009
 APPLIED LINEAR ALGEBRA IN ELECTRICAL ENGINEERING

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.

1. a) Show that the set of all 2×2 non-singular real matrices forms a group under matrix multiplication.
b) Let H be a subgroup of a group (G, o) and R be a binary relation on G defined by $a R b \Leftrightarrow a^{-1} o b \in H$ for $a, b \in G$. Prove that R is an equivalence relation.
c) Let $(G, *)$ and $\left(G^{\prime}, *^{\prime}\right)$ be two groups and $f: G \rightarrow G^{\prime}$ be a homomorphism. Prove that
i) $\quad f(e)=e^{\prime}$ where e and e^{l} are the identities of G and G^{\prime} respectively.
ii)

$$
f\left(a^{-1}\right)=[f(a)]^{-1} \forall a \in G
$$

$$
5+4+5
$$

CS/M.Tech (EE)/SEM-1/EEP-105/2009-10
2. a) Prove that a subgroup of index 2 is a normal subgroup.
b) Show that $\left(Z_{5},+,.\right)$ is an integral domain where Z_{5} has usual meaning.
c) Let ($R,+$,) be a ring and S be a non-empty subset of R. Show that S is a subring of R iff $a+(-b) \in S$ and $a . b \in S$ for every pair of elements $a, b \in S$, where $-b$ is the negative element of $b . \quad 4+5+5$
3. a) Show that a set of vectors $\left\{\alpha_{1}, \alpha_{2}, \ldots \ldots . . ., \alpha_{n}\right\}$ in a vector space V over a field F is linearly dependent iff one of the vectors can be expressed as a linear combination of the rest.
b) If $V=W_{1} \oplus W_{2}$ and W_{1}, W_{2} are finite dimensional, show that V is finite dimensional and $\operatorname{dim} V=\operatorname{dim} W_{1}+\operatorname{dim} W_{2} . \quad 7+7$
4. a) Show that any linearly independent set of vectors in a finite dimensional vector space V over a field F is either a basis of V or can be extended to a basis of V.
b) Given two linearly independent vectors ($1,0,1,0$) and $(0,-1,1,0)$ of R^{4}, find a basis for R^{4} that includes these two vectors.
c) Find the coordinate vector of $\alpha=(3,1,-4)$ relative to the basis $B=\{(1,1,1),(0,1,1),(0,0,1)\} \frac{\text { of } R^{3}}{5+5+4}$
5. a) Define rank and nullity of a linear mapping.

Let V and W be two vector spaces over a field F and V is finite dimensional.

If $T: V \rightarrow W$ be a linear mapping, show that nullity of $T+\operatorname{rank}$ of $T=\operatorname{dim} V$.
b) Let $T: R^{3} \rightarrow R^{2}$ be a linear mapping defined by
$T(x, y, z)=(2 x+y-z, 3 x-2 y+4 z)$

Find the matrix of T relative to the ordered bases

$$
\begin{aligned}
& \left\{f_{1}=(1,1,1), f_{2}=(1,1,0), f_{3}=(1,0,0)\right\} \text { of } R^{3} \\
& \left\{\mathrm{~g}_{1}=(1,3), \mathrm{g}_{2}=(1,4)\right\} \text { of. }
\end{aligned}
$$

6. a) Let V and W be two vector spaces over the same field F with $\operatorname{dim} V=m$ and $\operatorname{dim} W=n$. Show that $\operatorname{dim} \operatorname{Hom}(V, W)=m n$.
b) Let V be an n dimensional vector space over F and $\left\{\alpha_{1}, \alpha_{2}, \ldots \ldots . . \alpha_{n}\right\}$ be a basis of V. Let $f_{1}, f_{2}, \ldots \ldots \ldots, f_{n} \in V^{*}$ be the linear functional defined by $f_{i}\left(\alpha_{j}\right)=\delta_{i j}=1$ when $i=j$ $=0$ when $i \neq j$

Prove that $\left\{f_{1}, f_{2}, \ldots \ldots . . f_{n}\right\}$ is a basis of V^{*}.

CS/M.Tech (EE)/SEM-1/EEP-105/2009-10
7. a) Find the dual basis of the following basis of $R^{3}\{(1,0,0),(0,1,0),(0,0,1)\}$.
b) Let $V(F)$ be an inner product space. Let $\alpha, \beta \in V$ and $a \in F$. Prove that $|\alpha \cdot \beta| \leq\|\alpha\|\|\beta\|$.
c) Use the Gram-Schmidt process of orthogonalisation to obtain an orthonormal basis for the Euclidean space $V_{3}(R)$ starting from the basis $\{(1,1,1),(0,1,1),(0,0,1)\} .4+5+5$
8. a) Solve the following system of equations by LU decomposition method :
$x+y+z=1$
$4 x+3 y-z=6$
$3 x+5 y+3 z=4$
b) Solve the following system of equations by Jacobi's method correct to 3 decimal places :
$83 x+11 y-4 z=95$
$7 x+52 y+13 z=104$
$3 x+8 y+29 z=71$.
$7+7$

