

Invigilator's Signature : \qquad
CS/M.Tech(EE)/SEM-1/CI-1.1/2009-10 2009
ADVANCED MATHEMATICAL TECHNIQUES

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
 (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The Cauchy-Reimann equations for the functions $u(x, y)$ and $v(x, y)$ are
a) $\quad u_{x}=v_{y}$ and $u_{y}=-v_{x}$
b) $\quad u_{x}=-v_{x}$ and $u_{y}=v_{y}$
c) $\quad u_{x}=v_{y}$ and $u_{y}=v_{x}$
d) $\quad u_{x}=-v_{y}$ and $u_{y}=v_{x}$.

CS/M.Tech(EE)/SEM-1/CI-1.1/2009-10
ii) The fixed points of the function $f(z)=z /(2-z)$ are
a) 0 and 2
b) 1 and 2
c) 0 and 1
d) only 2 .
iii) If for any two independent events A and $B, P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{3}$, then $P(A B)$ is
a) $\frac{1}{2}$
b) $\frac{3}{2}$
c) $\frac{2}{3}$
d) $\frac{1}{6}$.
iv) The mean and variance of a Binomial $\left(100, \frac{1}{2}\right)$ distribution are
a) 50 and 25
b) $\quad 100$ and 25
c) 100 and 50
d) 100 and $\frac{1}{2}$.
v) For the shift operator E and forward difference operator Δ,
a) $\Delta=E-1$
b) $\Delta=E+1$
c) $\Delta=E$
d) $\quad \Delta^{2}=E+1$.
vi) If $P(A)=P(B)=1$, then the value of $P(A B)$ is
a) 2
b) $\frac{1}{2}$
c) 1
d) 0 .
vii) The distribution for which mean and variance are equal is
a) Poisson
b) normal
c) binomial
d) exponential.
viii) The value of $\oint_{C} z^{2} \mathrm{~d} z$ where $C:|Z|=1$ taken anticlockwise is
a) $2 \pi i$
b) $-2 \pi i$
c) 0
d) π.
ix) The interpolation formula which can be used to find a polynomial from the $\begin{array}{lllllll}\text { given data } \boldsymbol{x}: & 0 & 1 & 2 & 4\end{array}$
$\boldsymbol{y}: \begin{array}{lllll}3 & 9 & 17 & 22\end{array}$
is
a) Newton's forward interpolation formula
b) Gaussian interpolation formula
c) Newton's backward interpolation formula
d) Lagrange's interpolation formula.
x) If two functions $u(x, y)$ and $v(x, y)$ are Harmonic, then $f(z)=u+i v$ is analytic. This statement is
a) True
b) False.
xi) If a function $f(z)$ is analytic within and on contour C, then $\int f(z) \mathrm{d} z$ is
a) path dependent b) path independent.
xii) The normal curve with parameters m and σ is
a) symmetric about the line $x=0$
b) symmetric about the line $x=m$
c) not symmetric
d) symmetric about the y-axis.

GROUP - B

Answer any four of the following. $4 \times 5=20$
2. Derive the mean and variance of Poisson Distribution.
3. Find the analytic function $f(z)=u+i v$, the real part of which is given by $u(x, y)=e^{x}(x \cos y-y \sin y)$.
4. Find out the polynomial which satisfies the following data :

$\boldsymbol{x}:$	0	1	2	3
$\boldsymbol{y}:$	0	1	4	10

5. Evaluate $\oint_{C} \frac{d z}{\left(z^{2}+1\right)\left(z^{2}+4\right)}$ where C is the contour | $z \mid=1.5$ taken anti-clockwise.
6. In a shooting competition, the probability of hitting ptarget of a man is $\frac{1}{5}$. If he fires 5 times, what is the probability of hitting the target at least twice.
7. Prove that (i) $E^{-1}=1-$ (ii) $\Delta E=E$, where E is the shift operator, Δ is the forward difference operator and is the backward difference operator.

GROUP - C
Answer any four of the following. $4 \times 10=40$
8. a) Find the value of $\cosh 0.56$ from the given data :

x_{j}	$f_{\mathrm{j}}=\cosh x_{\mathrm{j}}$
$0 \cdot 5$	$1 \cdot 127626$
$0 \cdot 6$	$1 \cdot 85465$
$0 \cdot 7$	$1 \cdot 255169$
0.8	$1 \cdot 337435$

b) Show that $\oint_{C} \frac{\mathrm{~d} z}{z-2}=2 \pi i$, where C is the contour $|z-2|=2$ taken anti-clockwise.
9. a) A box contains 8 red and 5 black balls. Two draws of 3 balls are made successively without replacement. What is the probability that both the drawings give red balls. 4

CS/M.Tech(EE)/SEM-1/CI-1.1/2009-10
b) Evaluate $\oint_{C} \frac{z^{3} \mathrm{~d} z}{z^{3}-4 z^{2}+5 z-2}$, where Eis the contour $|z|=3$ taken anti-clockwise.
10. a) Calculate the dominant eigenvalue of the matrix

$$
A=\left[\begin{array}{lll}
4 & 4 & 0 \\
4 & 4 & 0 \\
0 & 0 & 8
\end{array}\right]
$$

b) A continuous random variable X has probability density function given by

$$
\begin{array}{cl}
f(x)=k x e^{-2 x} & , x \geq 0 \\
0 & , \text { otherwise. }
\end{array}
$$

Determine the constant k and mean of x.
11. a) Determine whether the following functions are Harmonic or not (i) $u=\frac{x}{x^{2}+y^{2}}$ (ii) $v=x^{3}-3 x^{2}$. If yes, find the analytic function $f(z)=u+i v$.
b) Determine the region of the co-plane into which the rectangular region in the z-plane bounded by the lines $x=0, y=0, x=1$ and $y=2$ is mapped under the transformation $w=z+(2-i)$.
12. a) Derive the mean of binomial distribution with parameters n and p.

b) The heights (in inches) of a group of 10,000 men are normally distributed with parameters $m=64$ and $\sigma=4$. Find the number of men whose height is (i) more than 72 " and (ii) less than 56 ".
[Given : The area under the stdard normal curve to the right of the ordinate at $z=2$ is $\cdot 02$.] 6
13. Solve the initial value problem $\frac{\mathrm{d} y}{\mathrm{~d} x}=-0 \cdot 2 x y, y(0)=1$ by Runge - Kutta method (fourth order) with $h=0 \cdot 2$, for 10 steps. Calculate the error in each step.

