

Invigilator's Signature : \qquad
CS/M.Tech(EE)/SEM-1/EMM-101/2010-11

2010-11

ADVANCED ENGINEERING MATHEMATICS
Time Allotted : 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any seven of the following :

$$
7 \times 2=14
$$

i) Find the rank of the matrix $A=\left(\begin{array}{rrr}1 & 0 & 3 \\ 4 & -1 & 5 \\ 2 & 0 & 6\end{array}\right)$.
ii) Find the value of λ if the matrix

$$
A=\left(\begin{array}{rrr}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & \lambda
\end{array}\right) \text { is singular. }
$$

iii) Find the value of A^{100} if $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$.
iv) State whether the following functions are analytic or not :
a) $f(z)=\operatorname{Re}(z)$
b) $f(z)=z^{2}$.
v) Evaluate : $\oint_{C} \frac{e^{2 z} \mathrm{~d} z}{(z-1)(z-2)}$, where C is the circle $|z|=3$.
vi) Solve the following system of equations by Gauss elimination method :

$$
\begin{aligned}
& 5 x_{1}-x_{2}+x_{3}=10 \\
& 2 x_{1}+4 x_{2}=12 \\
& x_{1}+x_{2}+5 x_{3}=-1
\end{aligned}
$$

vii) Prove that
a) $\quad E=\frac{1}{1-}$
b) $D=\frac{1}{h} \log E$,
where E is the shift operator, is the backward difference operator and D is the differential opeator, h being the shift in x.
viii) Evaluate $\oint_{L} \operatorname{Re}(z) \mathrm{d} z$ where L is the line joining the origin to the point $(1+i)$.
ix) Classify the stationary points of the function :

$$
f(x, y)=2 x^{2}+2 x y+y^{2}-2 x-2 y+5
$$

x) Find the residue of $f(z)=\frac{4-3 z}{z^{2}-z}$ at the poles $z=0$ and $z=1$.

Answer any eight of the following :
$8 \times 7=56$
2. a) If $u=x^{3}-3 x y^{2}$, then show that there exists a function $v(x, y)$ such that $w=u+i v$ is analytic in a finite region.
b) Find the bilinear transformation which maps the points $z=\bullet, i, o$ into the points $w=o, i$, \cdot respectively.
3. Find the condition that the transformation wo $\frac{a z+b}{c z+d}$ transforms the unit circle in the w-plane into a straight line in the z-plane.
4. a) Find the poles of the function $f(z)=\frac{1}{\sin z-\cos z}$. Also specify the nature of the poles.
b) Find the zeros of the following $f(z)=z^{2} \sin 2 z$ and indicate its nature.
5. a) Evaluate : $\oint_{C} \frac{z \mathrm{~d} z}{(z-1)(z-2)^{2}}$, where C is $|z-2|=$ $\frac{1}{2}$ taken anti clockwise.
b) Evaluate: $\oint_{C} \frac{z+1}{z^{2}-2 z} \mathrm{~d} z$, where C is the circle $|z|=5$.
6. Find the eigen values and eigen vectors of the matrix

$$
A=\left(\begin{array}{rrr}
3 & 1 & -1 \\
2 & 2 & -1 \\
2 & 2 & 0
\end{array}\right)
$$

7. a) If $H=P+i Q$ be a Hermitian matrix, then show that P is a real symmetric matrix and Q is a real skew-symmetric matrix.
b) If $S=M+i N$ be a skew-Hermitian matrix, then show that M is a real skew-symetric matrix and N is a real symmetric matrix.
8. Show that if the matrices A and B are orthogonal and $|A|+|B|=0$ then $A+B$ is singular.

9. Apply the Newton - Raphson method to find a root of the equation $x^{2}-5 x+4=0$ with trial value 5 correct up to 3 places of decimal.
10. a) Find $e^{-0.75}$ from the following data using both Newton's forward and backward formulae :

$\boldsymbol{x}:$	1.00	1.25	1.50	1.75	2.00
$\boldsymbol{e}^{-\boldsymbol{x}}=\boldsymbol{y}:$	0.3679	0.2865	0.2231	0.1738	0.1353

b) Use Runge-Kutta method of 4 th order to find $y(0.2)$ and compare it with the exact solution of $y \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2}-x ; y(0)=2$ taking $h=0 \cdot 2$.
11. Find the extreme values of $f(x, y)=1-x^{2}-y^{2}$ subject to the condition $x+y=1$.
12. Prove that the shortest distance between two points in a plane is a straight line.

