	Utech
Name :	(4)
Roll No.:	A Standard Of Exempleign 2nd Exemples
Invigilator's Signature :	

CS/M.Tech(EE)/SEM-1/EMM-101/2010-11 2010-11

ADVANCED ENGINEERING MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any seven of the following: $7 \times 2 = 14$
 - i) Find the rank of the matrix $A = \begin{pmatrix} 1 & 0 & 3 \\ 4 & -1 & 5 \\ 2 & 0 & 6 \end{pmatrix}$.
 - ii) Find the value of λ if the matrix

$$A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & \lambda \end{pmatrix}$$
 is singular.

- iii) Find the value of A^{100} if $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
- iv) State whether the following functions are analytic or not:
 - a) f(z) = Re(z)
 - b) $f(z) = z^2$.
- v) Evaluate: $\oint_C \frac{e^{2z} dz}{(z-1)(z-2)}$, where C is the circle |z| = 3.

40191 [Turn over

$$5x_{1} - x_{2} + x_{3} = 10$$

$$2x_1 + 4x_2 = 12$$

$$x_1 + x_2 + 5x_3 = -1$$

vii) Prove that

a)
$$E = \frac{1}{1 - \square}$$

b)
$$D = \frac{1}{h} \log E$$
,

where E is the shift operator, \square is the backward difference operator and D is the differential operator, h being the shift in x.

- viii) Evaluate $\oint_L Re(z) dz$ where L is the line joining the origin to the point (1+i).
- ix) Classify the stationary points of the function:

$$f(x, y) = 2x^2 + 2xy + y^2 - 2x - 2y + 5.$$

x) Find the residue of $f(z) = \frac{4-3z}{z^2-z}$ at the poles z = 0 and z = 1.

Answer any *eight* of the following : $8 \times 7 = 56$

- 2. a) If $u = x^3 3xy^2$, then show that there exists a function v(x, y) such that w = u + iv is analytic in a finite region.
 - b) Find the bilinear transformation which maps the points $z = \bullet$, i, o into the points w = o, i, \bullet respectively.

40191

- 3. Find the condition that the transformation $w = \frac{az + b}{cz + d}$ transforms the unit circle in the *w*-plane into a straight line in the *z*-plane.
- 4. a) Find the poles of the function $f(z) = \frac{1}{\sin z \cos z}$. Also specify the nature of the poles.
 - b) Find the zeros of the following $f(z) = z^2 \sin 2z$ and indicate its nature.
- 5. a) Evaluate : $\oint_C \frac{z \, dz}{(z-1)(z-2)^2}$, where C is $|z-2| = \frac{1}{2}$ taken anti clockwise.
 - b) Evaluate: $\oint_C \frac{z+1}{z^2-2z} dz$, where *C* is the circle |z| = 5.
- 6. Find the eigen values and eigen vectors of the matrix

$$A = \left(\begin{array}{ccc} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{array}\right) \, .$$

- 7. a) If H = P + iQ be a Hermitian matrix, then show that P is a real symmetric matrix and Q is a real skew-symmetric matrix.
 - b) If S = M + i N be a skew-Hermitian matrix, then show that M is a real skew-symetric matrix and N is a real symmetric matrix.

CS/M.Tech(EE)/SEM-1/EMM-101/2010-11

- 9. Apply the Newton Raphson method to find a root of the equation $x^2 5x + 4 = 0$ with trial value 5 correct up to 3 places of decimal.
- 10. a) Find $e^{-0.75}$ from the following data using both Newton's forward and backward formulae:

x :	1.00	1.25	1.50	1.75	2.00
$e^{-x} = y$:	0.3679	0.2865	0.2231	0.1738	0.1353

- b) Use Runge-Kutta method of 4th order to find y (0.2) and compare it with the exact solution of $y \frac{dy}{dx} = y^2 x$; y (0) = 2 taking h = 0.2.
- 11. Find the extreme values of $f(x, y) = 1 x^2 y^2$ subject to the condition x + y = 1.
- 12. Prove that the shortest distance between two points in a plane is a straight line.

40191