

CS/M.TECH(EE)/SEM-1/PSM-101/2012-13 2012

ADVANCED CONTROL SYSTEM
Time Allotted: 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions. $\quad 5 \times 14=70$

1. a) For the system shown in following figure, write down state equations,

when switch S is closed and Diode D is open.
b) For the matrix given find (i) Eigenvalues, (ii) Eigenvector, (iii) Diagonalization matrix.

$$
A=\left[\begin{array}{rr}
3 & -2 \\
-1 & 2
\end{array}\right]
$$

c) Construct the state model for a system characterized by the differential equation,

$$
\frac{\mathrm{d}^{3} y}{\mathrm{~d} t^{3}}+6 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+11 \frac{\mathrm{~d} y}{\mathrm{~d} t}+6 y=u
$$

Hence obtain the block diagram of the system in canonical form.
$4+5+5$
2. a) Find the $f(A)=e^{A t}$ using Cayley-Hamilton technique, where $A=\left[\begin{array}{rr}0 & 1 \\ -1 & -2\end{array}\right]$
b) Consider the state equation

$$
\left[\begin{array}{l}
\dot{x}_{1(t)} \\
\dot{x}_{2(t)}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1(t)} \\
x_{2(t)}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)
$$

The problem is to determine the state-transition matrix $\Phi(t)$ and state vector $x(t)$ for $t \geq 0$, when the input is $u(t)=1$ for $t \geq 0$.
c) A continuous time plant is described by the state equation

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-2 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u ; x(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

The state equation is to be solved for $x(t)$ using digital computer. Obtain suitable recursive relations. Take sampling interval $T=1 \mathrm{sec}$.
3. a) Find out the overall transfer function of the system and also the output for $k=1,2,3$.

b) Solve the difference equation

$$
\begin{aligned}
c(k+2)+3 c(k+1)+2 c(k)=u(k) ; & c(0)=1 \\
c(k) & =0 \text { for } k<0 .
\end{aligned}
$$

CS/M.TECH(EE)/SEM-1/PSM-10182012-13

 UREShc) Find the range of K for the system shown in the figure below to be stable.

$$
5+4+5
$$

4. a) A closed loop system shown in figure. The transfer function is $G(s)=\frac{k}{s(0 \cdot 5 s+1)}$. Select a gain K and the sampling period T so that the overshoot is limited to $0 \cdot 3$ for a unit step input and the steady state error for a unit ramp input is less than $1 \cdot 0$.

b) What is Describing function ? Find out the describing function for Dead-zone with saturation.
5. a) Consider a plant $G(s)=\frac{1}{(s+1)(s+3)(s+5)}$ that is to be placed under PID control. Tune PID controller using ZN 2nd method.
b) Consider an LTI system with the following state-space coefficient matrices :
$A=\left[\begin{array}{cc}0 & 50 \\ -200 & -200\end{array}\right], B=\left[\begin{array}{c}0 \\ 200\end{array}\right], C=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $D=0$.
i) Design a State Feedback with Integral controller for the system such that the desired closed-loop poles are at $s_{1}=-300, s_{2}=-10-10 i$ and $s_{3}=-10+10 i$.
ii) Draw state block diagram of the system with controller.
c) Show that the pole placement design and observer design are independent of each other. $5+5+4$
6. a) Draw the phase plane trajectory of the following nonlinear system by Isocline method. Write a comment on stability.

b) Consider the system described by $x^{\prime}=A x$ where $A=\left[\begin{array}{rr}-1 & -2 \\ 1 & -4\end{array}\right]$. Determine whether the system is stable or not.
7. a) Determine the stability of the non-linear system shown in figure.

Also determine the amplitude and frequency of the limit cycle.
b) A system is described by

$$
\begin{array}{r}
x_{1}^{\prime}=-x_{1}+x_{2}+x_{1}\left(x_{1}^{2}+x_{2}^{2}\right) \\
x_{2}^{\prime}=-x_{1}-x_{2}+x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)
\end{array}
$$

Determine the asymptotic stability using Lyapunov's second method.
$10+4$
$===========$

