

Time Allotted : 3 Hours Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest questions.

1. i) Show that $\log z$ is analytic anywhere except at (0, 0).
ii) Convert $\int^{2 \pi} \frac{\mathrm{~d} \phi}{a^{2}+\sin ^{2} \phi}$ into an equivalent complex 0
integral.
2
iii) Show that λ^{m} is e-val of $A_{n x n}$ where λ is the eigenvalue of $A_{n x n} ; m \quad N$. 3
iv) Find co-ordinates of $(0,3,1)$ with respect to the vectors (1, 1, 0), ($1,0,1$), ($0,1,1$). 2
v) Find critical points of $w=e^{2 z}-2 i z+3 . \quad 2$
vi) Explain $N-R$ method geometrically. 3

b) Evaluate $\int \frac{e^{2 z}}{(z+1)^{3}} \mathrm{~d} z$ where c is the ellipse $x^{2}+y^{2}=9$.
2. a) If $f^{\prime}(z)$ has a n-fold zero at $z=z_{0}$ then show that the angles after transformation are multiplied by $(n+1)$.
b) Show that Laplace's Equation is preserved under conformal transformation.
3. a) Obtain the equation to the curve $y=f(x)$ giving the minimum surface of revolution about X-axis.
b) Show that Euler-Lagrange equation can be put in the form :

$$
1 / y[d / \mathrm{d} x(F-\grave{y} \partial F / \partial \grave{y})-\partial F / \partial x]=0
$$7

5. a) State and prove Caley Hamilton theorem and verify it for the matrix :

$$
\left\{\begin{array}{llllllllll}
0 & 0 & 1 & 3 & 1 & 0 ; & -2 & 1 & 4
\end{array}\right\} .
$$

b) Show that the eigenvalues of a symmetric matrix are all real. 6
6. a) A top open rectangular box has capacity 32 cubic ft . Find the dimension of the box so that the total surface is minimum.
b) Find all extreme values of the function :

$$
x^{3}+y^{3}-3 x-12 y+20
$$

Find also the saddle points.

CS/M.TECH (EE)/SEM-1/EAM-CO1/2010-11 viesh

7. a) Find whether the set and vectors.
$S=\{(1,2,-1,3),(3,-1,2,1),(2,-2,3,2),(1,1,1,-1)\}$
is linearly dependent. Find a subset of S which is linearly independent.
b) Show that $S=\left\{(x, y, z): x^{2}+y^{2}=z^{2}\right\}$ is not a subspace of $\mathbb{R R}_{3}(\mathbb{R})$.
8. a) Solve the equation using Gauss-Seidel method :

9

$$
\begin{aligned}
& 28 x+4 y-z=32 \\
& x+3 y+10 z=24 \\
& 2 x+17 y+4 z=35
\end{aligned}
$$

b) Find the smallest positive root of the equation :

$$
e^{x}=4 \sin x
$$

Correct upto 4 decimal places by bisection method.

