	/ Uiedh
Name :	A
Roll No.:	As planted O'S amounting and Expellent
Invigilator's Signature :	

2011 ADVANCED CONTROL SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) Eigenvalues of a system are
 - a) poles of the system
 - b) zeros of the system
 - c) both poles and zeros of the system
 - d) only zeros which lie in left half of the s-plane.
- ii) Kalman's test is carried out to check
 - a) the stability of the system
 - b) the controllability & observability of the system
 - c) type of singularity of the origin
 - d) state transition matrix at $t = \infty$.

41126 [Turn over

- iii) Voltage drop across a resistor cannot be taken as a state variable because
 - a) resistor is not an energy storing element
 - b) it is a passive element
 - c) resistor has a tolerance band
 - d) all of these.
- iv) The analysis of multiple inputs multiple outputs system is conveniently studied by
 - a) State space approach
 - b) Root locus approach
 - c) Characteristics equation approach
 - d) Nichols chart.
- v) Existence of a limit cycle in a system depends upon
 - a) type of forcing function applied
 - b) the way forcing function is applied
 - c) the magnitude of forcing function
 - d) all of these.

- vi) The state model of a linear continuous time system is the
 - a) state equation of the system
 - b) output equation of the system
 - c) state equation & output of the system
 - d) none of these.
- vii) For single input, 4 state and 2 output system, the dimension of C matrix is
 - a) 4×4

b) 2×4

c) 4×2

- d) 4×1 .
- viii) The second order system x = Ax has A = -1 1

1 0

The values of the damping & frequency are respectively

a) 1 & 1

- b) 0.5 & 1
- c) 0.707 & 2
- d) 1 & 2.
- ix) For state transition matrix ϕ t, which statement is incorrect?
 - a) $\phi(t_1 + t_2) = \phi(t_1) + \phi(t_2)$
 - b) $[\phi(t)]^n = \phi(nt)$
 - c) $\phi^{-1}(t) = \phi(-t)$
 - d) $\phi(0) = I$.

- x) One *n*-order system is fully observable when the observable matrix has rank
 - a) (n-1)

b) *n*

c) 2

- d) None of these.
- xi) The transfer function of a network is $\frac{1+0.3s}{2+s}$. It

represents a

- a) lag network
- b) lead network
- c) lag-lead network
- d) proportional controller.
- xii) For eliminating the steady state error, the control action required is
 - a) proportional control
 - b) proportional plus derivative control
 - c) proportional plus integral control
 - d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

$$3 \times 5 = 15$$

2. A system is described by the differential equation

$$\frac{\mathrm{d}^3\,y}{\mathrm{d}\,t^3}+6\frac{\mathrm{d}^2\,y}{\mathrm{d}\,t^2}+11\frac{\mathrm{d}\,y}{\mathrm{d}\,t}+10\,y=8u(t)$$
 ,
Where y is the output and

 \boldsymbol{u} is the input to the system. Obtain the state space representation of the system.

41126

3. Check whether the system represented by the following state equation is controllable or not :

$$x = \begin{bmatrix} -5 & 2 & 1 \\ 0 & 0 & 1 \\ -1 & -4 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u , y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x$$

4. A system is described by x = Ax + Bu and y = Cx where the matrices are

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}$$

Determine the transfer function of the system.

5. Find out the controllable canonical form of the following system:

$$H(s) = (s + 1) / (s^2 + 5s + 3)$$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

6. a) Write down the properties associated with state transition matrix.

7. The state equation of a linear invariant system is given below:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

find out

- i) state transition matrix
- ii) the complete solution x(t) of the state equation at t > 0 due to application of a step input under zero initial conditions.
- iii) controllability of the system.
- 8. a) Digitalize the following system:

$$X = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} u$$

b) Find out the controllable canonical realization of the following system:

$$H(s) = (s+6) / (s^2 + 2s + 5)$$

9. a) Derive the transfer function of an armature controlled DC motor.

b) A PI controller offsets steady state error. Explain.

c) Why a derivative controller is not used alone?

41126 7 [Turn over