	Utech
Name:	
Roll No.:	In Sparse (IV Exercising 2nd Excision)
Invigilator's Signature :	

CS/M.Tech (ECE)/SEM-2/MVM-204A/2010 2010

QUANTUM & NANOELECTRONICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

1. Answer any seven questions :

 7×2

- i) What are the nanostructured materials?
- ii) Define Quantum dot?
- iii) Mention a few applications of nanostructured materials?
- iv) What are the advantages of Silicon-nanocrystal over the bulk Silicon?
- v) Write down the time-independent Schrodinger equation with proper notation ?
- vi) What are the different modes of using Atomic force microscopy?
- vii) What are the critical issues for nanostructure synthesis and assembly?
- viii) What is chiral vector and chiral angle?
- ix) What materials are used for tip fabrication of Atomic force microscopy system?

30384 (M.TECH)

[Turn over

CS/M.Tech (ECE)/SEM-2/MVM-204A/2010

- 2. a) How can you differentiate the quantum dots, quantum wire an nanotube?
 - b) Why are nanostructure materials (scientifically) interesting?
 - c) What are the properties of nanocrystalline materials?

6 + 4 + 4

- 3. a) Describe a process to form Si-nanocrystals with diameter 2.5 5 nm, which is compatible with semiconductor processing techniques used in industry.
 - b) The following figure is showing the XPS characteristics curves of Silicon implanted SiO_2 films annealed for 10 minutes with different temperature. From the figure, at what temperature the nanocrystalline Silicon is observed? Explain the other curves.

Binding Energy (eV)

c) You want to form the Germanium nanoparticles by decomposing organogermane in the presence of octanol $(C_8H_{18}O)$ as capping ligand in SC-hexane at 400-500° C. Describe the detail process.

- 4. a) "A catalyst of 10 nm nanoparticles is 100 times more reactive than the same amount of material in 1 micron particles". Justify the above statement with a simple experiment.
 - b) Imagine that an electron is trapped in a one-dimensional box whose length is $1\cdot 1$ nm. Starting with the following equation for electron wavefunction in H_2 atom :

$$-\frac{\hbar}{2m}\frac{d^2\psi z}{dz^2} + V(z)\psi(z) = E\psi(z)$$

Infinite well :
$$V_0 \rightarrow \infty$$

Calculate the energy eigenvalues and sketch the eigenfunctions for n = 1 - 6.

c) What is the wavelength of an electron traveling at a velocity which is 39% of the speed of light?

Plank's constant = 6.626×10^{-34} J-s, Mass of an electron = 9.11×10^{-31} kg. 6 + 4 + 4

CS/M.Tech (ECE)/SEM-2/MVM-204A/2010

- b) Define piezoelectric effect with proper diagram.
- c) What is the function of photodetector in Atomic force microscopy? 1+5+5+3
- 6. a) What are the important properties of Carbon Nanotube?
 - b) How can you classify the Arm chair and Zigzag geometry of Carbon Nanotube? Which one is showing metallic behavior?
 - c) How can you form the Single-walled Nanotube as well as Multi-walled Nanotube using ARC discharge method? 2+3+1+8
- 7. a) What is the difference between Single Electron Transistor (SET) and conventional MOSFET?
 - b) Explain the functionality of SET with basic operation of Single electron box.
 - c) What is Coulomb Blockade?

4 + 7 + 3