	<u>Uleah</u>
Name:	A
Roll No.:	As Spanner (Kit Samuelalige Start Excellent)
Inviailator's Signature :	

CS/M.Tech (ECE-VLSI)/SEM-2/MVLSI-204A/2013 2013 QUANTUM AND NANO-SCIENCE

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Objective Type Questions)

(Objective Type Questions)				
1.	Fill	in the blanks of the following:) × 1 = 10	
	a)	A is a quantum of vibrational mo	echanical	
		energy.		
	b)	In HEMT spacer layer is doped.		
	c)	Inter band transitions in an b	and gap	
		semiconductor involve a photon and a phonon.		
	d)	Wavelengths of UV rays and X-rays are e	expressed	
		in		
	e)	In SI unit the value of Planck's constant is		
	f)	Quantum island is also known as	island.	
304	19 (M	M.Tech)	Turn ovei	

CS/M.Tech (ECE-VLSI)/SEM-2/MVLSI-204A/2013

- g) In quantum electrons will feel the boundaries along x, y and z directions.
- h) In quantum mechanics total energy operator is also known as operator.
- i) At absolute zero of temperature, the Fermi level represents the occupied energy level.
- j) For LASER action we need emission.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. a) Discuss the wave-particle duality of light.
 - b) Explain the uncertainty principle.

3 + 2

- 3. Find the wave function of a particle trapped in a box of infinite potential well.
- 4. Explain the formation and the features of a quantum well.
- 5. Calculate the deBroglie wavelength of an electron of energy 10 keV and compare it with the wavelength of electromagnetic radiation for which the photon has the same energy.
- 6. What do you mean by strained-Si structure? Why is strained-Si used in MOSFET?

30419 (M.Tech)

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- 7. a) Derive the one-dimensional form of time independent
 Schrödinger wave equation for a free particle of mass m
 moving along positive x direction.
 - b) Define position probability density and relate it to the probability current density. 2 + 6
- 8. a) Discuss FD statistics.
 - b) Explain the significance of Fermi energy.

10 + 5

- a) Explain briefly the Coulomb blockage phenomenon.
 Discuss the principle of operation of single electron transistors.
 - b) Narrate the principle of operation of quantum well laser.

6

10. a) Obtain the kinetic energy operator (k) and momentum operator (p) for a free particle moving along positive x direction. Hence find [x, p]. Do position and momentum operators commute with each other?

$$3 + 3 + 2 + 1$$

- b) What are eigenfunction and eigenvalue equation? 3
- c) Prove that [AB, C] = [A, C] B + A [B, C] where A, B, C are three operators.

CS/M.Tech (ECE-VLSI)/SEM-2/MVLSI-204A/2013

11. a) Explain how mobility enhancement can be done in HEMT. Hence justify the HEMT is known as MODFET.

6 + 2

- b) Write the DOS functions for 3D, 2D, 1D systems and sketch their variations with energy. Assume the E-k relation to be parabolic. 3+3
- 12. Write short notes on any three of the following: 3×5
 - a) Quantum Hall effect
 - b) Quantum wire
 - c) Super lattice
 - d) Scattering mechanisms in a semicondoctor.