

Time Allotted : 3 Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 which is compulsory and any four from the rest. $5 \times 14=70$
Answer should be brief and to the point.

1. Attempt any seven questions :
$7 \times 2=14$
a) What do you mean by Group Velocity and Phase Velocity?
b) What are the different modes obtained in Optical fibres?
c) Explain Indirect bandgap semiconductor principle in brief.
d) Explain the term 'Population Inversion'.
e) Comment about the various noise currents in Photodetectors.

CS/M.Tech (ECE-NEW)/SEM-2/MCE-201/2011
f) A laser source operating at wavelength 1.55 dum with usable spectral band of 80 nm has been used for power coupling to an optical fibre. What will be the optical bandwidth in case of WDM ?
g) What is optical add/drop multiplexer ?
h) What is optical isolator?
2. a) A step index fibre has a normalized frequeny $v=26 \cdot 6$ at a 1300 nm wavelength. If the core radius is $25 \mu \mathrm{~m}$, find the numerical aperture.
b) What do you mean by Dispersion in Optical fibres? 2
c) Explain Group Velocity Dispersion ( GVD ). 2
d) Explain Material Dispersion in Optical fibres. 5
e) Obtain the relation of Group Velocity with $\lambda$ and Phase Index. 3
3. a) Explain the principle of photon emission in Light Emitting Diode ( LED ).
b) Describe the recombination in Heterojunction LED with band diagrams.
c) Obtain the LASER diode Rate Equation. 3
d) What do you mean by External Quantum Efficiency of LASER?
e) Describe the operating principle of Liquid Crystal Display.
4. a) Explain the operation of PIN diode as a photodetector. 2
b) An InGaAs PIN photodiode has the following parameters at a wavelength of 1300 nm :
$I_{D}=4 \mathrm{nA}, \eta=0 \cdot 90, R_{L}=1000 \Omega$ and surface leakage current is negligible. The incident optical power is 300 nW ( -35 dBm ), and the receiver bandwidth is 20 MHz . Find :
i) mean-square shot noise current
ii) mean-square dark current
iii) mean-square thermal noise current.
c) What do you mean by Raman Effect in Optical amplifiers ?
d) Explain the optical amplification mechanism in Erbiumdoped fibre amplifier.
5. a) Explain how multiplexing and demultiplexing of four wavelengths can be achieved in WDM using Fibre Bragg Grating and optical circulator.6
b) Show that for a $2 \times 2$ fibre coupler the phase of the driven coupler always lags by $90^{\circ}$ behind the phase of the driving fibre.

CS/M.Tech (ECE-NEW)/SEM-2/MCE-201/2011

c) In a $2 \times 2$ biconical tapered fibre coupler the theoughput and coupled powers are 230 microwatts and 5 microwatts respectively for input power of 250 microwatts.
i) What is the coupling ratio ?
ii) What are insertion losses ?
iii) Determine the excess loss of the coupler. $2+2+2$
6. a) Give expressions for different losses incurred in fibre optic star network. There is a fibre optic star network containing 50 stations in which station is located at a distance of 500 metres from the star coupler and fibre attenuation is $0.4 \mathrm{~dB} / \mathrm{km}$. If excess loss and connector loss in the network be 1.25 dB and 1.0 dB respectively, determine the power margin between the transmitter and the receiver in that star network. $3+3$
b) Explain the architecture of a four-fibre bidirectional line switched SONET ring with 5 nodes. How this configuration would be modified in case of failure of an entire node? $4+4$
7. Write short notes on any two of the following :
a) Rise time Budget in Digital optical link
b) Multichannel amplitude and frequency modulation in optical communications
c) Signal-to-noise ratio in analog optical receiver.

