	Ullegh
Name :	
Roll No.:	A disease of Exercising and Explanat
Invigilator's Signature :	

CS/M.Tech (ECE-NEW)/SEM-2/MCE-201/2011 2011

PHOTONICS AND OPTICAL COMMUNICATION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 which is compulsory and any *four* from the rest. $5 \times 14 = 70$ Answer should be brief and to the point.

1. Attempt any seven questions :

 $7 \times 2 = 14$

- a) What do you mean by Group Velocity and Phase Velocity?
- b) What are the different modes obtained in Optical fibres?
- c) Explain Indirect bandgap semiconductor principle in brief.
- d) Explain the term 'Population Inversion'.
- e) Comment about the various noise currents in Photodetectors.

30002 (M.Tech)

[Turn over

CS/M.Tech (ECE-NEW)/SEM-2/MCE-201/2011

- f) A laser source operating at wavelength $1.55~\mu m$ with usable spectral band of 80 nm has been used for power coupling to an optical fibre. What will be the optical bandwidth in case of WDM?
- g) What is optical add/drop multiplexer?
- h) What is optical isolator?
- 2. a) A step index fibre has a normalized frequeny v=26.6 at a 1300 nm wavelength. If the core radius is 25 μ m, find the numerical aperture.
 - b) What do you mean by Dispersion in Optical fibres? 2
 - c) Explain Group Velocity Dispersion (GVD). 2
 - d) Explain Material Dispersion in Optical fibres. 5
 - e) Obtain the relation of Group Velocity with λ and Phase Index. 3
- 3. a) Explain the principle of photon emission in Light Emitting Diode (LED).
 - b) Describe the recombination in Heterojunction LED with band diagrams.
 - c) Obtain the LASER diode Rate Equation. 3
 - d) What do you mean by External Quantum Efficiency of LASER?
 - e) Describe the operating principle of Liquid Crystal Display.

- 4. a) Explain the operation of PIN diode as a photodetector.
 - b) An InGaAs PIN photodiode has the following parameters at a wavelength of 1300 nm:

 $I_D=4$ nA, $\eta=0.90, R_L=1000~\Omega$ and surface leakage current is negligible. The incident optical power is 300 nW (- 35 dBm), and the receiver bandwidth is 20 MHz. Find :

- i) mean-square shot noise current
- ii) mean-square dark current
- iii) mean-square thermal noise current.
- c) What do you mean by Raman Effect in Optical amplifiers?
- d) Explain the optical amplification mechanism in Erbiumdoped fibre amplifier.4
- 5. a) Explain how multiplexing and demultiplexing of four wavelengths can be achieved in WDM using Fibre Bragg Grating and optical circulator.6
 - b) Show that for a 2×2 fibre coupler the phase of the driven coupler always lags by 90° behind the phase of the driving fibre.

6

CS/M.Tech (ECE-NEW)/SEM-2/MCE-201/2011

- c) In a 2×2 biconical tapered fibre coupler the throughput and coupled powers are 230 microwatts and 5 microwatts respectively for input power of 250 microwatts.
 - i) What is the coupling ratio?
 - ii) What are insertion losses?
 - iii) Determine the excess loss of the coupler. 2 + 2 + 2
- 6. a) Give expressions for different losses incurred in fibre optic star network. There is a fibre optic star network containing 50 stations in which station is located at a distance of 500 metres from the star coupler and fibre attenuation is 0.4 dB/km. If excess loss and connector loss in the network be 1.25 dB and 1.0 dB respectively, determine the power margin between the transmitter and the receiver in that star network. 3+3
 - b) Explain the architecture of a four-fibre bidirectional line switched SONET ring with 5 nodes. How this configuration would be modified in case of failure of an entire node? 4+4

 2×7

- 7. Write short notes on any *two* of the following :
 - a) Rise time Budget in Digital optical link
 - b) Multichannel amplitude and frequency modulation in optical communications
 - c) Signal-to-noise ratio in analog optical receiver.