	<u>Unean</u>
Name:	A
Roll No.:	As Agreem Of Strengthing 2nd Combant
Inviailator's Sianature :	

CS/M.TECH (ECE)/SEM-2/MCE-204-D/2012

2012

MICROWAVE MEASUREMENT TECHNIQUES

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Question no. 1 and any four questions from the rest.

1. Answer any seven of the following:

- $7 \times 2 = 14$
- a) Why do we need the testing of electronic components?
- b) Why characteristic impedance of 50Ω is usually selected as RF line Z_0 ?
- c) Compare between the linear versus non-linear behavior of a device.
- d) What are the advantages of using the S-parameters to explain and RF circuit?
- e) What are the differences between spectrum analyser and network analyser?
- f) Comment on dynamic range and accuracy of a network analyser.
- g) Explain the significance of resolution bandwidth of a spectrum analyser.

30352(M.Tech) [Turn over

CS/M.TECH (ECE)/SEM-2/MCE-204-D/2012

- h) What is tracking generator? What is its significance in spectrum analysis?
- i) Describe the principle of wave meter in microwave frequency measurement.
- j) Define the advantages of FFT Analyser.
- 2. a) Explain the principle of unknown impedance measurement in RF/microwave frequency range.
 - b) Describe with suitable block diagram, the technique of unknown impedance measurement by the method of short circuit minima shift.
 - c) Briefly explain the resonance methods of impedance measurement. 4 + 5 + 5
- 3. a) Illustrate the challenges in radio frequency impedance measurement.
 - b) Explain with suitable schematic diagram, the method of unknown impedance measurement using magic-tee in microwave frequency range.
 - c) Briefly describe the role of different T-networks in RF impedance measurements. 5 + 4 + 5

- 4. a) Explain the technique of frequency measurement of an unknown microwave source using slotted line method.
 - b) Describe with suitable block diagram, the electronic methods of frequency measurement with special emphasis on transfer oscillator technique. 7 + 7
- 5. a) Explain why power is treated as more meaningful, directly measurable parameter than voltage in microwave frequency range.
 - b) Describe the method of microwave power measurement using bridge circuits and find out the expression of bridge sensitivity.
 - c) Illustrate the important considerations involved in the choice of suitable detectors for power measurement.

5 + 5 + 4

- 6. a) Illustrate the different sources of non-linearity in calibration in direct reading bridges for power measurement where linearity is extremely desirable.
 - b) Describe the principle and method of high power measurement in microwave frequency range. 7 + 7

CS/M.TECH (ECE)/SEM-2/MCE-204-D/2012

- 7. a) Explain with suitable block diagram, the operations of a super heterodyne type spectrum analyser.
 - b) Describe the advantages and disadvantages of super heterodyne type spectrum analyser. 7 + 7
- 8. a) Why do we need for both magnitude and phase measurement to characterise an electronic device.
 - b) Define the principle of measurement of S-parameters using a vector network analyser.
 - c) Explain the working principle of a generalized network analyser with suitable block diagram. 3 + 4 + 7
