	Utech
Name :	
Roll No. :	A Democry Exercising and Excitored
Invigilator's Signature :	

CS/M.Tech (ECE)/SEM-2/MCE-202/2013 2013 ERROR CONTROL CODING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer Question No. 1 and any four from the rest.

GROUP - A

- Answer *all* the following: 7 x 2 = 14
 a) What is code rate?
 b) What is hamming bound?
 c) What is Galois field?
 d) Define syndrome and syndrome polynomial.
 e) What are the error trapping decoding of cyclic code?
- g) Explain Reed Solomon code.

Define viterbi algorithm.

30192 (M.Tech)

f)

[Turn over

GROUP - B

- Write down the advantages and disadvantages of cyclic b) code.
- c) Construct the generator matrix for (7, 4) cyclic code using the generator polynomial $g(x) = 1 + x^2 + x^3$.

4 + 4 + 6

3. For (6, 3) linear block code whose parity check equation defined as $p_1 = x_1 + x_3$ $p_2 = x_1 + x_2 + x_3$ $p_3 = x_1 + x_2$

Find:

- i) generator matrix
- ii) parity check matrix
- iii) error checking capability
- iv) error check table.
- Write down short notes on the following: 4. 3 + 3 + 4 + 4
 - Extended block code a)
 - b) Hamming bound
 - c) BCH code
 - d) Reed Solomon code.

30192 (M.Tech)

- 5. a) Prove that for (n, k) coding t number of error detection is possible if and only if $2^{n-k} \ge \sum_{i=t}^{t} {n \choose i}$
 - b) Prove that minimum hamming distance is possible for $\mathbf{d}_{\min} \geq 2t + 1. \text{ For } t \text{ error correction.}$
- 6. a) Write down the advantages and disadvantages of convolution code.
 - b) Convolution code describe by $g_1 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$ $g_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ $g_3 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$.
 - i) Draw the encoder corresponding to the code.
 - ii) Draw state transition diagram.
 - iii) Draw Trellis diagram.
- 7. a) Describe with block diagram decoding mechanism of BCH code?
 - b) Describe maximum likely hood detector.
 - c) Show that $x^3 + x + 1$ is an irreducible polynomial over GF (2). 4 + 4 + 6